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Abstract 

Self-driving technology has the potential for disrupting the transportation industry, specially 

autonomous ride-hailing, which is part of the new paradigm of Mobility-as-a-service. 

Companies involved in autonomous technology have received billions of dollars in funding 

and they are deploying the capital in research and development as fast as possible. Analysts 

and industry experts are starting to realise the potential, an example of this is Tesla’s stock, 

which has gone up more than +1000% in the last two years. Technological convergence and 

declining cost curves play a big role in the current state of the technology and its readiness in 

the next years. An overview of the literature on potential implications of this technology has 

been conducted, identifying that urban planning will play a big role in designing the evolution 

of cities as parking and other transportation behaviours heavily change. There are important 

potential benefits for people in terms of economic and time savings, health improvements, 

avoidance of accidents. The environment will benefit tremendously for this transition towards 

less and cleaner cars. The Robotaxi network is Tesla’s approach for autonomous ride-hailing 

has been analysed because of the state of its technology and its ability to be deployed and scale 

fast. The Monte-Carlo simulation model developed in Python shows that the potential adoption 

rate and revenue, which could be hundreds of billions of dollars per year, it has the capacity 

for capturing a significant share of the total vehicles’ miles travelled and some of the possible 

effects for this technology depicted in the literature have been validated by the model. 
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1. Introduction  

Self-driving technology will revolutionize the transportation industry, reshape cities, and 

impact the life of billions of people. The more society knows about the potential effects that 

this technology will have, the more prepared it will be to tackle the challenges that the rapid 

changes that this disruption will bring. One important application for this technology is 

autonomous ride-hailing, where users of the service will order a customised ride, in this case 

without a driver, making the cost so low that it has the potential of displacing the car ownership 

for a significant part of the population. 

For these reasons this master thesis aims to analyse and research what are the most relevant 

possible effects that this radical change in the transportation system will have in cities, people’s 

lives, environment, and potential further uses of this technology. In order to achieve this, 

research has been conducted on the most relevant literature on the topic. 

How the technology came to be and relevant history has been researched too for better 

understanding of the context and background on the topic. This includes the current state of the 

technology and main players in the industry, as well as some of the potential challenges that 

will need to be overcome before of the mass adoption of this technology, like regulation. 

According to experts on the industry, analysts and the stock market, Tesla is one of the 

companies with the most potential for solving the remaining technical challenges for achieving 

full self-driving capabilities. They are also the only one in a good position for deploying a 

service at scale and fast, thanks to their millions of cars currently driving on roads, their current 

production growth and demand for their cars. 

This is why a Monte Carlo simulation model has been developed in order to quantify what is 

the potential rate of adoption, economic impact, and repercussions on other relevant areas like 

the environment in the coming decades. The model does not predict the future, but it is tool 
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where the user can input his own judgment on some key variables using their probability 

distribution. The output is computed through statistical analysis of thousands of simulations, 

which is a methodology commonly used for complex and indeterministic models like this one. 
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2. Aim, objectives, and limitations 

In this section the aim, the main objectives of this master thesis will be detailed as well as the 

limitations of the research. 

2.1 Aim 

The general aim of this thesis is to understand the impact that autonomous ride-sharing 

technologies will have on the world. The focus of the simulation model will be Tesla’s 

Robotaxi network because it is probably going to be one of the first players in the industry, so 

assessing their rate of adoption and economic impact it is key for understanding the potential 

of this technological revolution that will take place, most probably, this decade. 

2.2 Objectives 

The more specific objectives that this master thesis want to achieve are: 

• Research the history and some of the factors and trends that are making autonomous 

driving possible. 

• Study the competitive landscape of autonomous driving technology, identifying key 

players and milestones in their path towards achieving autonomous driving capabilities. 

• Develop a simplified flexible simulation model which allows for the study of the 

potential adoption rate of the Robotaxi network. 

• Develop a simplified flexible simulation model which allows for the study of the 

economic impact of the Robotaxi network. 

• Analysis of the results and output from the simulation models. 

• Research of the most relevant implications that the autonomous driving and 

autonomous ride-hailing may have on society based on relevant literature and current 

data. 



12 

 

2.3 Limitations 

The reach of the project has been influenced by the following factors: 

• Because of the study nature of this study, it is limited to the public available information 

on the different topics covered in the thesis. Some companies may be more or less 

advance on their technological development than it is disclosed. There may be projects 

and technologies on “stealth mode” which would invalidate some of the claims made 

in this thesis. 

• There are big differences in many areas like infrastructure, culture, economics, 

customer preferences, etc… in different regions of the world. This study is more 

oriented, in terms on data and implications, towards a western urban society, mainly 

the United States, but the results are still useful for other areas if those differences are 

considered. 

• Predicting the future, especially for a complex model like the one analysed in this thesis, 

is impossible, this thesis project aims to give provide a tool with which to roughly 

estimate the most probable scenario. Nevertheless, there are many factors that are not 

taken into account because, at the moment of developing the model it was considered, 

based on the information available, that those were not relevant enough. 
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2.4 Benefits of the project 

The achievement of the objectives exposed previously would provide benefits to the following 

stakeholders on the topic 

2.4.1 Competitors 

In the recent years more companies have started to understand the potential of autonomous 

vehicles and how close this futuristic technology is, but most traditional automakers realised 

quite late the potential of EVs and self-driving cars. This thesis may be a valuable data point 

on the opportunity that this technology represents and why it is worth to spend the necessary 

resources in its development.  

2.4.2 Regulators 

This stakeholder will play a crucial role for the industry, both federal and local governments 

will need to adapt at a very rapid pace to the technologies developments as they occur. It is 

essential for each region to prepare in advance for the coming changes to be able to take 

advantage of the potential benefits, which are both economical and for people’s lives. It is also 

crucial to put the necessary measures in places to mitigate some of the negative aspects of such 

transformation in the transportation system.  

2.4.3 Individuals 

This may help the public understand how their lives will change in the near future. People can 

use this information to take a more informed decision for the purchase of vehicles, houses, or 

financial instruments. The learnings for identifying technology convergence, declining cost 

curves and the potential impact of some technologies may be useful for identifying new 

opportunities both for investing and entrepreneurial activities. 

  



14 

 

  



15 

 

3. Background 

3.1 EVs 

At the start of 20th century, the main way of transport was still the horse, the industrial 

revolution brought changes in the available technologies, which combined with the higher 

wages allowed for innovation to take place in the transportation industry. Electric vehicles are 

not new, their origins date even earlier that the internal combustion engine cars. In 1834, the 

inventor Thomas Davenport made the first electric vehicle, which worked with direct current 

and non-rechargeable batteries, it was only capable of short distance trips, but the history of 

electric vehicles had started (Zhao, 2017). 

In 1837 the Scottish inventor Robert Davidson invented the first electric car available to the 

public, which was almost half a century before Gottlieb Daimler and Karl Benz would invent 

the gasoline engine in 1886. Davidson’s vehicle had a battery made out of iron, zinc and 

mercury and sulfuric acid; this battery was non rechargeable so it was quite impractical (Zhao, 

2017). 

This changed in 1859 with the first rechargeable electric battery, the lead-acid battery 

developed by the French physicist  Gastón Planté (Pavlov, 2017). In spite of this development, 

until 1880 it was not considered efficient or reliable enough to be used in an electric vehicle, 

in this year the chemistry engineer Camille Alphonse Faure improved the design and efficiency 

of this kind of battery covering the lead plaques with and paste of lead oxides, sulfuric acid and 

water, which also allowed for the industrialization of manufacturing of such batteries 

(Guarnieri, 2011). 

Gustave Trouvé saw the potential of this new technology and in 1881 created an electric 

tricycle using a Siemens engine on a conventional tricycle, this is considering the first electric 
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vehicle in history(Zhao, 2017). On the following years the electric vehicle market grew and it 

was the technology with the most sales between 1890 and 1900. 

At the start of the 20th century there were three main technologies competing in the industry, 

steam, electric and internal combustion engines. In 1910 the market share for each one these 

technologies in the automobile industry were: 40% for steam engine, 38% for electric and the 

rest, 22% for diesel and gasoline. 

Electric vehicles entered the century with a mature product and well positioned in the market. 

It had the advantage against the internal combustion engine that it did not have vibration, noise, 

or gearbox, making an easier and more comfortable rise. The reason more the lack of mass 

adoption was the lack of extensive electric infrastructure, because the range was no issue since 

the main use case the urban, which where the roads in better condition (Zhao, 2017). 

The internal combustion engine ended up dominating the market, starting in 1908 with the 

release of the Ford Model T, the first car manufacture in series, which made the car much more 

affordable that the alternatives. In 1912 the cost of  Model T was around $650 while an electric 

vehicle was around $1.750, almost three times the price (McFadden, 2020). On top of that, 

Charles F. Kettering solve one of the main inconveniencies of gasoline cars, the manual starter, 

whit his electrical starting motor, the long-distance roads were also improved, which made 

range a more relevant factor in the buying decision process. 

It was not until 1973, with the Petroleum Crisis, where a conflict in the middle east created a 

heavy increase in oil prices and the United States realised the heavy dependency they had on 

oil. This was combined with the heavy increase in the ecologist movement, with the creation 

of WWF in 1968 and Greenpeace in 1971. With the objective of reducing the energy 

dependency and CO2 emissions, the US passed the Electric Vehicle Research, Development, 
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and Demonstration Act, which gave a heavy push on development and research of electric 

engines and batteries (McFadden, 2020). 

In 1990, the state of California, trying to improve their air quality, approved the Zero Emissions 

Mandate, which made mandatory that 2% of vehicles sold in the state would not emit 

greenhouse gasses by 1998 and 10% by 2003. In response to this, General Motors presented 

their electric prototype, the Impact, in the Los Angeles Auto Show. The car came into reality 

in 1996 with the General Motors EV1, over 1000 cars were produced and leased to drivers in 

California and Arizona. In 2003 the state of California modified the Zero Emissions Mandate 

becoming much more permissive; therefore, General Motors decided to cancel their EV1 

program and destroyed most the cars, some were donated to museums or other educational 

institutions (Shahan, 2015). Other brands like Honda, Nissan or Toyota had similar programs 

in place during this time. 

This year, 2003, Tesla was founded, but this topic will be discussed in another next section. 

3.2 Autonomous driving 

Self-driving is a technological advancement that promises to greatly change people’s lives and 

the transportation industry. Its history could be considered to have started at 1925, when 

Houdina Radio Control showed their “American Wonder”, a radio-controlled car which made 

a trip through Broadway in New York City (TIME, 1925). The next relevant event was the 

Futurama exhibition by General Motors and design by Normal Bel Geddes, which was 

presented in the New York World Fair in 1939, the scale model of a city of the future featured 

radio-controlled electric cars driving through electromagnetic lanes. These visions of the future 

inspired different prototypes like the GM Firebird II (GM Heritage Center, 2017), another wire-

controlled car by RCA Labs , and the DS 19 by Citroen. All of these cars relied on external 
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infrastructure to the car so the use cases were limited and the scalability was difficult because 

of the high cost. 

This is why in 1986 the first self-driving prototypes which did not relied on other infrastructure 

were presented, thanks to the Carnegie Mellon University Navlab team and Erst Dickmann’s 

team from the Budeswehr University of Munich (Thorpe et al., 1987). In 1995 the Navlab team 

drove from Washington D.C. to San Diego, California in the “No hands across America” tour, 

where the car was able to drive autonomously 98% of the way thanks to the use of imitation 

learning with a small neural network (Pomerleau, 1987). Their European counterparts 

participated in the European PROMETHEUS project driving From Munich, Germany to 

Odense, Denmark driving autonomously around 95% of the way. 

These successes in the field inspired other researchers to dive into the topic, like Frank et al. 

(Franke et al., 1998), who studied the urban aspect of autonomous driving, which had not been 

researched previously because the focus was on highway driving. Their research pointed out 

that computational capabilities were increasing rapidly allowing for good object detection and 

recognition but there were some visual challenges like tunnels, reflections, or shadows, 

therefore it was recommended to use of enhanced sensors. These are right now an important 

element in the industry, specially LiDAR.  

Another important project was the races organised by the Defense Advanced Research Project 

Agency (DARPA) by the US Department of Defense (DARPA, 2014). The first one took place 

in 2004, with a prize of $1 million to the first team to cross the finish line after a 240 kilometres 

route from California to Nevada through the desert. None of the participants were able to finish 

the race, but in the second edition, one year later, 5 vehicles were able to complete the race 

successfully (Buehler et al., 2007), which shows the rapid advancements in the technology. 

The last race, in 2007, was the Darpa Urban Challenge (Buehler et al., 2009), were the 
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participants had to drive a 96 kilometres route in a mock-up town, encountering situations 

usually found in cities. The successful teams heavily relied on LiDAR technology, which 

would shape the future of most the industry for the coming years.  

In 2013 the National Highway Traffic Safety Administration developed a 4-level framework 

for vehicle automation (NHTSA, 2013b), but one year later, the Society for Automotive 

Engineers International (J. Shuttleworth, 2019), introduced their 5-level automation which is 

currently the industry standard and depicts the role of human and operational functions of the 

automated driving system. 

 

Figure 1: SAE Autonomy levels (J. Shuttleworth, 2019) 

3.3 Tesla 

3.3.1 History and strategy 

The company was founded in 2003 by two engineers, Marc Tarpenning and Martin Eberhard 

in San Carlos, California under the name Tesla Motors (Vance, 2015). It got its name after 

Nikola Tesla a Serbian inventor from the 19th century, best known for his discoveries in 

alternating current and rotating electromagnetic fields. 
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The founders got inspired by the public reception of the EV1 by General Motors, where the 

lucky individuals that got their hands on the vehicles had express their excitement about the 

product. The EV1 project validated the technology and gave a new life to the electric vehicles 

industry (Shahan, 2015), and Eberhard and Tarpenning wanted to take advantage of the 

momentum built. 

Elon Musk joined the company in 2004 investing $30 million and becoming chairman at its 

Board of Directors (Tesla Motors, 2010). In 2006 their first electric vehicle prototype was 

unveiled, the Tesla Roadster, they sold about 2450 units, starting the production in 2008 (Reed, 

2020) . The car’s chassis was built by Lotus and it is heavily inspired in the Lotus Elise. Their 

objective was to build a zero compromises high performance electric sports car, in order to 

show the world that electric cars were a viable option and could work even as a sports car 

(Musk, 2006). 

In 2008 a big restructure in the company took place, 25% of the workers had to be laid off, 

Elon Musk became the new CEO and the original founders left the company (Tesla Motors, 

2010). This transition brought some controversy, as the founders alleged that their exit from 

the company was not completely voluntary and there were some legal actions taken on the 

matter, which were dropped shortly after (Tesla, 2010a). 

After the launch of the Roadster, the financials of the company were not ideal, they had less 

than $10 million in cash to produce the ordered cars, which could cost more than that. At that 

time Daimler decided to buy a 10% stake in the company for $50 million, which combined 

with a $465 million loan from the Department of Energy helped the company survive this 

difficult period. Next year, in 2010, the company decided to go public through an IPO, raising 

$226 million (Squatriglia, 2010). 
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This first car was not intended for the masses, the car costs were over $100.000, being the 

battery the main costs, because at the time the cost of Li-ion batteries was around $1000 per 

kWh, 10 times higher than it is right now (Bullard, 2020; Curry, 2017). As Tesla stated, their 

plan was to use the profits of the Roadster to build a more affordable car (Musk, 2006), which 

was later revealed as the Model S, and finally, as part of their first phase, build an even more 

affordable car, the Model 3.  

The Model S prototype was revealed in 2011 (Tesla, 2011), a luxury sedan three times cheaper 

than their previous model, their entry point in the consumer market. The deliveries of the cars 

started in 2012 and the reception by user and media was great, winning multiple “Car of the 

Year” prices and even “Car of the Century” by Car and Driver (Sherman, 2015). This same yar 

the company started building their Supercharging network for charging the cars, which is now 

a global network of fast chargers, right now there are more than 30.000 chargers in 3.240 

stations all over the world (Tesla, 2021e). 

Tesla new that battery production would be one of the main bottlenecks in the supply chain in 

the coming years, this is why they announced in 2013 the project to build their first Gigafactory 

in Nevada. It would be of the largest buildings in the world and with plan of producing more 

batteries than it was being produced at the time in the whole world. One use case people were 

not aware was energy storage, and in 2015 the company announce their solar energy products 

and energy storage solutions for homes and businesses (Tesla, 2016). Tesla had become more 

than a car company and this is why in 2017, the name of the company changed from “Tesla 

Motors” to “Tesla, Inc.”, which was a better name considering their new lines of products and 

future projects. 

In order to make their mission a reality, “accelerating the world's transition to sustainable 

energy” (Tesla, 2021a), they needed to go to the mass consumer market, for this reason, in 
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2016 Tesla announced their Model 3 sedan (Tesla, 2019a). The production started in 2018, and 

the ramp up in production was a very difficult task, which combined with overpromising, 

resulted in what was known as “production hell”, where the company had a lot of 

manufacturing difficulties to achieve set goals, which was combined with financial and stock 

market issues. 

They were able to exit “production hell” after many months of hard work, the ramp up was 

achieved and Tesla started their winning streak. Starting with the announcement of the 

Cybertruck in November 2019, a polarizing pickup truck which surprised the world because of 

its design, features and pricing (Tesla, 2010b). At the same time Tesla’s profitability started to 

be apparent, and they have been profitable and growing the net income rapidly since Q3 2019 

(Tesla, 2021d). The stock reacted accordingly increasing a more than 1500% since then 

(Nasdaq, 2021), and a lot of analysts started understanding some of the potential, strategy, and 

technology of the company. 

The company have plans for growing their car production approximately 50% every year for 

the foreseeable future in order to manufacture 20 million cars in 2030 (Tesla, 2021c). In 2022 

they will probably start deliveries of their pickup truck and semi-truck, and they have plans to 

enter every vehicle for factor, delivery vans, smaller cars, etc… Their energy business should 

grow to a similar size, according to musk it should be as big as their automotive business. 

But Tesla has even more ambition, their autonomous driving technologies is one of the most 

advanced in the industry, they have developed their own battery technology, solar panels, and 

neural network training supercomputer. Building a humanoid robot ,leveraging their existing 

technologies, is in their roadmap. This robot would be able to do some of the dangerous, 

repetitive, or boring manual tasks that humans perform nowadays (Tesla, 2021b).  
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3.3.2 Robotaxi Network 

The idea for Tesla to build a ride-hailing autonomous network had been brewing for several 

years. Elon Musk knew that in order to achieve their mission for “accelerating the world’s 

transition to sustainable energy” they needed to displace cars at higher rate than just 

substitution, Even producing 20 million units per year it would take decades considering the 

small replacement rate.  

It was first shared with the world by Elon Musk in Tesla’s blog (Musk, 2016) expressing their 

objective of enabling their cars to make money for its owner when he did not need it. Just 

tapping a button in the app would allow for your car to generate income for the owner. In cities 

where demand would probably exceed what the private owners can offer, Tesla would operate 

their own fleet to ensure the availability of the service. 

More details on the service were shared during Autonomy Day (Tesla, 2019b), first by 

introducing the idea that the car could be share with friends or co-workers if desired, but also 

through a ride-sharing app. 

 

Figure 2: Tesla Robotaxi app concept (Tesla, 2019b) 
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The first phase would be to use the Model 3 as a Taxi, Tesla express their plans of buying back 

all the cars which have been leased to individuals in order to use them exclusively to the ride-

hailing service, this would help them generate more revenue and manage the demand better. 

They also revealed their plan for having a longevity of the cars of 1 million miles and higher 

efficiency than current models. According to their calculation the approximate gross profit for 

each Robotaxi would be around $30.000 dollars and last 11 years. 

3.4 Big picture  

Disruptions are very difficult to predict, as shown in the image below the rate of adoption for 

different technologies have been increasing in the last century. The economic progress played 

a big role in this, as well as the increase efficiency in the manufacturing and logistic industries. 

 

Figure 3: Adoption of technologies since 1900 (McGrath, 2013) 

There is an opposite flywheel effect for the new and old technology that makes the transition 

very fast and follow an S curve, usually opposite S curves, as one grows exponentially the other 

one plummets. The reasoning behind this opposite flywheel effect can be found in the diagram 

below. 
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Figure 4: Opposite flywheels for old and new technologies (Arbib & Seba, 2017) 

The Robotaxi network presented by Tesla is part of the transportation system knows as Shared 

Autonomous Vehicles, which is the next iteration in the shared-use transportation systems.  

 

Figure 5: Evolution of shares-use transportation systems  (Reza, 2017) 

The Mobility-as-a-Service is a new paradigm is the transportation system where user of such 

service can plan, book, and pay via digital channels for multiple types of mobility, making 

easier to shift away from the necessity of owning a car to fulfil transportation needs (Jittrapirom 
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et al., 2017). In the near future autonomous ride-hailing will play a big role in this disruption, 

it will continue the groundwork that companies like Uber or Lyft started. 

The main reasons why autonomous ride-hailing has the potential for having a tremendous 

impact are economic. The upfront cost for the user for using the service is cero, this really helps 

the user to interact with the service and discover the benefits. The capital expenditure is done 

by the owner of the fleet, the user only needs to pay for the temporal utilization, which would 

be a lower price than other competitor services. A lot of the behavioural barriers that some 

users express, like waiting time, fares, sharing vehicle with other users (Krueger et al., 2016) 

have been broken down by services like Uber, Lyft or Blablacar.  

The price advantage of the service is going to be its main advantage against other mainstream 

methods of transportation, specially traditional ride-hailing or owning the vehicle itself. In 

comparison with ride-hailing the lack of driver will drive the cost down tremendously, as this 

is one of the biggest costs of this services. In regard to owning a car, the significant difference 

in utilization rate for these vehicles will make it a very attractive proposition. These 

autonomous cars will be electric which will also play a relevant role, as the lower operating 

costs will lower the cost even more, helping to displace internal combustion engine and 

traditional model of transport. 

Because of these reasons, once the technology is ready the transition towards autonomous ride-

hailing in the context of Mobility-as-a-service will be quick and inevitable. This is even more 

accurate if Tesla is able to be one of the first to achieve level four or five autonomy, because 

of the millions of cars they have currently in the roads. The higher utilization rate means that 

each autonomous car can displace more than one traditional car, making this transition fast. 

The process would start in cities, where the demand and density will be positive factors for this 

transition, but over the years it will keep expanding outwards capturing more of the total 
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addressable market. There will be always use cases where autonomous ride-hailing is not the 

best solution, but these will be small minority. 

3.5 Technology convergence 

For every technology of innovation that changes radically people’s lives or an industry, usually 

there is a convergence of different technologies and cost curves of other technologies that takes 

place. For the electric autonomous ride-hailing revolution that it is being discussed, the main 

technologies involved where: batteries, computer hardware and AI.  

There were clear trends in all of these industries for many years, but Tesla was one of the few 

companies that devised a plan to capitalise on this opportunity. In 2006, Elon wrote a blog post 

detailing their plan “The Secret Tesla Motors Master Plan (just between you and me)” (Musk, 

2006), where they laid the short-term plan, which has already come to fruition. The plan took 

into account the cost declining curves, as stated in the blog post “Almost any new technology 

initially has high unit cost before it can be optimized and this is no less true for electric cars.”. 

The plan was to build an electric car “without compromises”, this was the Tesla Roadster, using 

the profits to build a more affordable car, the Tesla Model S, and then use that money to build 

an even more affordable ca, the Tesla Model 3. 

Ten years later he publishes the “Master Plan, Part Deux” (Musk, 2016), where he revealed the 

real plan, expanding their product line of electric vehicles to all major segments, develop a self-

driving technology which was at least ten times safer that humans and finally the main topic of 

this thesis, ride-hailing, their Robo-Taxi network. This plan was no surprise to anyone who had 

been following Tesla’s steps, all their cars built since September 2014 had the Autopilot 

Hardware 1.0 for starting to train their autonomous driving AI.   
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3.6 Wright’s law 

One of the most famous technology predictions in history was Moore’s law, where Gordon 

Moore’s forecasted that the density of transistors on integrated circuits would keep doubling 

every two years, which would mean a consequent halving of computational costs (Schaller, 

1997). But the issue is that computational costs have begun to plateau in recent years as the 

growth in production of transistors have stagnated. The reason for this is that Moore’s law did 

not take into account another very powerful factor into the equation, the production volume, 

which is according to Wright’s Law the main mechanic behind the cost reductions that has 

happened in the recent years in industries like solar or batteries. 

Theodore Paul Wright was an American aeronautical engineer. In his paper “Factors Affecting 

the Costs of Airplanes” (Wright, 1936), while studying the production costs of the  airplane 

manufacturing industry in the 1920s, he determined that for every doubling in production, the 

costs would be reduced by a stable amount, around 10-15%. Modern research validates his 

theory, like the Santa Fe Risk Institute (Nagy et al., 2013), where a comparison between 

Wright’s Law and Moore’s Law across over 60 different technologies of the last century was 

performed. The result of this study was that Wright’s Law was 15% more accurate in predicting 

the cost decline curves of these technologies, even in semiconductor production the results 

pointed to a 40% higher accuracy for Wright’s Law. 

Nonetheless, Wright’s Law is far from perfect and faces multiple challenges, the main one is 

that it needs many years of cost data points in order to come up with a good estimation. Another 

important challenge is that even though it may predict the costs of the product depending on 

production volume it is not able to predict the demand and therefore the costs in the future, this 

is something that must be forecasted separately, taking into account both qualitative and 

quantitative factors into consideration. A good example of this would be the Lithium-Ion 

batteries, where the production growth was diminishing every year from 2000 to 2012 (Bullard, 
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2020; Placke et al., 2017), until the costs justified the production of electric cars. This year the 

Model S was released and the production growth have been accelerating ever since. 

 

Figure 6: Lithium-Ion battery cost decline (ARK Invest, 2021) 

As it has been explained with the example of electric cars, these cost reductions open the door 

for more demand, which lower the costs, which ends up opening the door to new products or 

business models which will adopt the technology, in this case Lithium-Ion Battery. Electric 

cars production is growing exponentially and the next product to adopt this battery technology 

may be utility-scale storage, which will positively influence the battery production-costs 

flywheel. 

3.7 Competitive landscape 

Tesla Robotaxi network relies on two different technological revolutions that are taking place 

right now, the rapid transition to electric vehicles and the shift toward self-driving cars. Tesla 

has competitors in both areas, but this thesis will focus on autonomy competitors because the 

manufacturing cost of the car is not such a big relevant factor, because this figure is small in 

comparison with the revenue potential for each car.  
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3.7.1 Autonomous cars 

One very important factor to achieve full autonomy is the real-world miles driven for training 

the neural networks that take the decisions while driving. This data point is a very good 

indicate, but obviously does not tell the whole picture, of the level of each companies’ 

technology. Unfortunately, this information is not always available or is not necessarily up to 

date, Tesla has over 3 billion miles (Karpathy, 2021), Comma.ai over 40 million miles 

(comma.ai, 2021),  Waymo over 20 million (Waymo, 2021b), and Cruise over 2 million for 

example. The difference with Tesla was their strategy, while other companies had to use their 

own vehicles and drivers to acquire data, Tesla was selling the cars and getting the data for 

free, this is why there is such a big difference in the amount of miles driven.  

But total miles driven are not the only factor, the technology used for understanding the world 

is key. Almost all companies rely heavily on LiDAR technology, which stands for Light 

Detection and Ranging, which user a laser to measure distances for generating a precise, three-

dimensional representation of its surroundings (Collis, 1970). Other companies make also use 

of high-definition maps, which contain information related to road shape, markings, traffic 

signs and other relevant information accurate to the centimetre level. This is the reason why 

some companies allow their cars to drive autonomously on certain roads or areas of a city. 

Tesla approach relies on camera vision and a neural network, just like their human counterparts, 

which allows it to be a more generalised solution and less dependent on infrastructure or 

external data.  

Another reason why total miles are not enough is that correctly annotating the data is also 

crucial, you need to correctly identify in the most efficient manner every object and agent in 

the driving situation. You also need to be able to gather and find the edge cases, those non 

common situations that your neural network is not able to handle at the moment and you need 



31 

 

to train on. These two processes required a lot of talent and technological development in order 

to digest efficiency the millions of miles of data that each company is acquiring. 

A good data point regarding the different companies is the Disengagement Report published 

by the California Department of Motor Vehicles (California Department of Motor Vehicles, 

2021b) (see Appendix A), which is an annual survey that the DMV required from all companies 

licensed to test their autonomous cars on California’s public roads.  

Not all companies are represented here, like Tesla or comma.ai, who have a different business 

model and they are testing their systems with real costumers using the products they’ve 

purchased, either the Tesla car or openpilot device by comma.ai. From this survey several 

conclusions can be drawn: 

• Many companies are involved in the space and are testing in real life conditions. 

• There are big differences in miles driven, being Waymo, Cruise, Pony.ai, Baidu, 

Nuro and Zoox the main companies, the ones over 50.000 miles driven in either 

2019 or 2020. 

• There is a big variance in the miles per disengagement, which points to big 

differences in the maturity between technologies. 

• Most companies improved their miles per disengagement metric heavily between 

2019 and 2020, which points on a rapid development of the technology.  
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Table 1: Rate of disengagement improvement California 19/20 

Company Improvement 

Waymo +126% 

Cruise +133% 

Pony.ai +65% 

Nuru +149% 

Zoox +2% 

 

A lot of the big players in the self-driving industry are start-ups, and almost all of them are not 

related to traditional automakers. One of the possible reasons for this is that the technology 

stack is very different and the rate of innovation is completely the opposite. The traditional 

automakers were used to subcontracting most of their software needs, so they lack the talent 

and corporate culture to tackle the autonomous driving technological challenges. 

3.8 Total Addressable Market 

In order to understand the potential economic opportunity that this innovation would mean 

some easy calculations have been made using the United States as an example. This is just for 

autonomous ride-hailing use, the self-driving technology will also generate billions for goods 

transportation. Some of the numbers are conservative rough estimations based on the 

technology and its potential benefits and advantages like convenience, lower cost, safety, etc. 

Table 2: TVM in the US (U.S. Department of Energy, 2021) 

TVM per year 3.2 trillion miles  
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Table 3: Distribution and Penetration of trips for autonomous ride-hailing 

Trips use case Distribution miles Penetration 

Commuting 33% 80% 

Shopping 29% 40% 

Social 26% 60% 

Other 12% 40% 

 

Table 4: Results of TAM miles in the US for autonomous ride-hailing 

US TAM Miles penetrated 1,874,022,400,000.00 

Total Penetration 58.56% 

 

Table 5: Results of Revenue TAM in the US for autonomous ride-hailing 

Price per mile $0.8 

Platform cut 30% 

Revenue Platform 450 billion 

 

The revenue for the platform would be almost pure profit, since the economic model is based 

on people owning the cars and operating them through the Robotaxi network platform. 

According to Tesla they would own some cars in big cities to balance the demand, when 

necessary, but the capital required for the initial investment on the cars was, is and will be done 

by people purchasing the cars from Tesla. 

The price sensitivity is very complicated to predict, because the lower the price is, the higher 

the demand it will be, so there should be a sweet spot which would create the highest returns. 

The price model will, most probably, dynamic like Uber, in order to balance the demand 

properly. 
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The TAM addressable market globally is more difficult to calculate, but only considering 

United States, Canada, Europe, Japan and China, the passenger miles that can be disrupted are 

over 10 trillion, which would mean trillions of dollars of revenue per year. 

  

Figure 7: Passenger miles by region  (U.S. Energy Information Administration, 2016) 

 

3.9 Regulation 

This is a very controversial topic, some people think that even if autonomous driving is ready, 

the regulators will not allow the technology to be deployed and it will significantly delay the 

autonomous ride-hailing revolution. In this section some of the regulation which have been 

passed in the U.S. already will be analysed and discussed. 

Regulators are taking seriously the autonomous vehicles issue, this is why they are enacting 

bills on the topic, according to the NCLS (National Conference of State Legislatures, 2021), 

these are the bills introduced related to the commercial use and operation on public roads, but 

even more bills are being introduced on related topics like cybersecurity of vehicle, licensing 

and registration, insurance and liability, privacy of collected vehicle data or vehicle inspection 
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requirements. Just in the last 5 years 47 out of 50 states have enacted a total of 513 bill related 

to autonomous vehicles. 

Table 6: Total bills related to autonomous vehicles passed per year 

Year Total States Total Bills 

2017 21 35 

2018 30 58 

2019 27 49 

2020 21 40 

 

Nevada was the first state that authorised the operation of autonomous vehicles in 2011 

(Nevada Legislature, 2011), when they passed a law that allowed the testing of autonomous 

vehicles, at that time, it required a person behind the wheel and passenger’s seat but it was an 

important first step in the regulation of the industry. As of February 2020, (National Conference 

of State Legislatures, 2021), 29 states had passed legislation allowing autonomous vehicles on 

the road. 

Some Tesla Robo-Taxi competitors like Waymo and Cruise are already operating driverless 

ride-hailing vehicles in some states. Waymo operates their Chrysler Pacifica Hybrid minivans 

in Phoenix metropolitan area, 24 hours per day, seven days a week, and also running a test 

program in San Francisco using Jaguar I-PACE (Waymo, 2021a).  

The conclusion from this section is that meaningful effort is being put by political actors into 

passing the necessary regulation to make autonomous cars possible, they are aware of the 

positive aspects like being safer and reduction of fatalities, as these are common talking points 

in the hearings. There are already commercial players operating in several states or cities, and 

this number is only going to increase as the technology improves. California alone, the largest 
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state in the United States, according to the DMV (California Department of Motor Vehicles, 

2021a), as of 19th October 2021, 55 companies to test autonomous vehicles with a safety driver, 

8 have been permitted to do driverless testing and 3 have obtained deployment permits. 

Even considering all this, the United States is not even close to the most advance country in 

terms of regulation according to the study by KPMG (KPMG, 2018) where the readiness for 

each country was analysed. The main factors studies where: policy and legislation, technology 

and innovation, infrastructure, and consumer acceptance. The top ten for Policy and legislation 

was the following: Singapore, New Zealand, The Netherlands, United Kingdom, Germany, 

United Arab Emirates, Canada, Sweden, Austria, and United States. 

Nonetheless there is still a lot of work to be done, but it is in the best interest of the regulators 

to pass the necessary regulations to be able to take advantage of the potential economic and 

social benefits that this technology will bring. The positive aspect of this technology is that it 

generates, because of its technological nature, a tremendous amount of data which will be used 

to convince both the public and politicians. 

  



37 

 

4. Autonomous technology and ride-sharing implications 

The implications will focus mainly on the bigger picture, in the effects of Autonomous EVs 

Transportation as a Service. These effects would take place once most conventional cars have 

been replaced by autonomous fleet of cars that are not necessarily owned by the user, opening 

a new whole set of possibilities and use cases. According to Heinrichs (2016) , the autonomous 

vehicles will be used both as private and commercial vehicles, but shared autonomous vehicles 

could offer  a service with huge potential, combining car-sharing and taxi services (Fagnant & 

Kockelman, 2014), which results in convenience and, cost and time savings without 

precedents. 

The effects will mostly use US data because it is going to be one of the first countries, other 

than China, where Autonomous TaaS will most likely be introduced because is where Tesla 

has the most data and where their Full Self-Driving technology is the most advanced. 

According to KPMG (2018), it is also the third most ready country in the world for autonomous 

driving, considering regulation, technology, infrastructure, and consumer acceptance. The only 

countries above it are Singapore and The Netherlands, but the big difference in population 

makes it more relevant to study how it will affect the US and also higher priority markets for 

the self-driving companies. 

Another very relevant factor for the implications of autonomous vehicles is the adoption rate 

in the area, the total share of the vehicle fleet or of the vehicles miles travelled (Litman, 2015). 

For this implications research it will be supposed that this adoption is high, some studies 

conclude that shared autonomous driving cars like the Robo Taxi network could replace about 

eleven cars (Fagnant & Kockelman, 2014) Some authors even believe that private would not 

even be needed at all in the future (Levin & Boyles, 2015). 
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4.1 Methodology 

With the objective of answering the research question of “What are the implications of wide 

adoption of autonomous ride-hailing networks?” a qualitative literature review has been 

conducted. The academic databases used were Scopus and Google Scholar because the topics 

in the scope of the research were well covered on them. Accessibility also played a decisive 

factor, with the student credentials from TUM (Technische Universität München) access all 

required literature was possible. 

Considering the literature research objective following keywords were used in the search 

process. For the search process several variants of the words were used, such as hyphenation 

or plural and singular variants. The main keywords used where “Autonomous” combined with 

“vehicles”, “ride-hailing” and “ride-sharing”, in addition “effects”, “implications” and 

“consequences” where used to. On the relevant implications found in this research further 

analysis of their existing literature was carried out to find more relevant information. 

Other than research papers some reading on book publications on relevant topics present in the 

literature was conducted in order to gather data to support claims or expand on ideas and 

concepts. For the same reasons data was search by public institutions and reputable sources for 

providing context and figures for the arguments presented. 

The following criterion were followed to select what research papers: 

• Title and abstract contain desired keywords 

• The language of the paper must be English 

• The publication must be recent considering the context for the topic. 

• On the last stage a quality criterion based on the relevance to the topic was applied. 
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4.2 Urban planning 

In the early 20th century, the cities were redesign once cars started to become mass produced 

(Brown et al., 2009), most public spaces became primarily road and parking space, leaving a 

small percentage of the street for people. Streets used to be places of public congregation, 

where people could walk, talk, shop, eat, etc.  

Nowadays a big part of cities is used for parking, for example,  one third of the land mass of 

American cities is currently used for parking spaces (Baldwin & Rehler, 2021), in some cities 

is even higher, like Los Angeles where 40% of the city has this use (Fraser et al., 2016). 

Once autonomous cars are driving people around, the concept of a parking space will become 

unnecessary. The car the brings you to the destination, and after that it can go pick up another 

user nearby, it does not need to wait for you occupying useful and scarce space.  

In the book “ReThinking a Lot” by Eran Ben-Joseph (Ben-Joseph, 2012), some very interesting 

figures about the parking culture in society are analysed, which helps to understand better the 

problem and the scale of the possibilities ahead. There are over 500.000.000 surface parking 

spaces in the US, which using a conservative 250 square feet size means that there is over 2800 

squares miles of surfaced parking space. In the US there are more than 100.000 shopping 

centres, where the parking requires more space than the actual mall. There is also an average 

of 8 parking spaces per car. 

The COVID situation gave us a glimpse of how fast and beneficial the transformation of public 

spaces can be, car lanes and parking spaces were transformed into restaurants outdoor areas 

(ReasonTV, 2021). As closed spaces posed a risk to people, city governments removed some 

regulations and allowed restaurants to occupy room previously reserved for cars, both 

suspending minimum parking requirements and allowing to use part of the sidewalk or even 

car lanes in some cases . The restaurants adapted fast to the new regulations and were able to 
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transform their new available space into dining areas, which was greatly appreciated by 

customers and the local economy. 

Autonomous vehicles have the potential of disrupting the parking industry, they will change 

how people interact with the city (Millard-Ball, 2019), a lot of new space will become suddenly 

available where new green spaces, affordable houses, community gardens and much more 

could be built. This is the biggest opportunity society has had to redesign the cities to their 

needs for centuries, and now more data, research, and information is available about what 

society needs than ever. The result would be a reduction of parking demand at urban core 

locations, reusing those spaces for boosting the economic activity and increasing the urban 

density in locations that may benefit from it (Bagloee et al., 2016). 

On the other hand, the benefits from autonomous vehicles like comfort, convenience, 

reliability, and increased time utilization could incentivise longer commuting routes, which 

would contribute to people moving away from cities, also known as urban sprawl, which would 

have a significant impact in prices and urban planning both in the city centres and areas close 

to centre of economic activity (Rubin, 2016). 

4.3 People’s lives 

4.3.1 Traffic 

According to the Texas A&M Transportation Institute report (2019), the average commuter in 

the US spends 42 hours per year stuck in traffic, which amounts to 6.9 billion hours totally 

each year. The worst part is that since 1980 it has gotten worse, it has increase around 20% in 

the last 40 years. 

There are four main causes for traffic, people looking for parking is the reason of 30% of traffic, 

after that, the high volume of vehicles on the roads. Another relevant factor is the lack of 

communication and slow human reaction times, which causes events like the phantom 
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intersection, where cars come to near standstill even though there was no major accident. And 

finally, accidents, which obviously cause traffic, because in many instances they close lanes or 

people slow down to see what is happening. 

Autonomous cars would help with all these issues because parking would be less necessary as 

explained previously. The communication between the cars would be more efficient, either 

through vehicle-to-vehicle (V2V) communication or faster response times for road events. 

These two factors combined would mean that the rate of accidents would radically decrease, 

since most accidents are cause by the human factor (McKenna, 1982). 

According to Anderson et al. (2014) some of the technological advantages and capabilities that 

may have the biggest impact on the way people drive and interact with roads would be: agent 

detection, valet parking, crash avoidance, platooning, lane changing, traffic sign and signal 

identification, safe manoeuvring at intersections and lane keeping. 

4.3.2 Accidents 

Road traffic is the leading cause of death for young people, between 5 and 29 years old, in the 

world (World Health Organization, 2021). In the U.S. in 2015 there was 6.76 million car 

accidents with 2.74 million serious injuries requiring medical attention as a result of these 

(NHTSA, 2020). Autonomous cars have the potential of changing this. Around 1.3 million 

people die every year, and around 50 million people is injured or disabled (World Health 

Organization, 2021). 

Both the fatalities and fatality rate in the US had been in declined for decades, as depicted in 

Figure 7, but in 2015 the trend changed and for a couple years started growing again. A possible 

reason for this is that drivers are more distracted than ever because of smartphones, a relevant 

metric about his issue is that around 660.000 US drivers are using their phone while driving at 

every moment of the day (NHTSA, 2013a).  The National Safety Council (Williams-Bergen et 
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al., 2011), reported that 1.6 million crashes are caused by cell phone use, and 387.000 injuries 

occur because of texting while driving. 

 

Figure 8: Fatalities and Fatality rate per Million VMT in the US (NHTSA, 2020) 

The human factor is key for accidents, The NHTSA determined (2015), that 94% of all 

accidents are caused by human errors. Autonomous driving could solve this issue and save the 

lives or avoiding injuries of millions of people. Even low levels of automation have the 

potential of avoiding around one third of current traffic accidents (Bagloee et al., 2016). 

Autonomy technology is already saving lives and has been doing it for several years already, 

in the Tesla Vehicle Safety Report (Tesla, 2021f) data is presented on how driving with Tesla 

Autopilot results in nine times less accidents than the average rate in the United States. 

Obviously, this metric is not perfect because it is not controlling for driver profile, routes, etc. 

but it is definitely a promising data point.  

4.3.3 Cost savings 

According to ARK Invest (Keeney, 2017),  the cost per mile of TaaS could get as low as $0.25, 

which is significantly lower than owning a personal car, which has an approximate cost per 

mile of $0.70. These costs include vehicle depreciation, fuel, parking, financing, insurance, 

maintenance & repair, registration & taxes, and tires. Other studies (Milakis et al., 2017) get to 
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similar conclusions, shared autonomous vehicles would decrease both the fixed and operations 

costs associated with transport and therefore reducing the rate of car ownership. 

This is the first real reduction in cost per mile (adjusted for inflation) since the Model T was 

released. An average driver in the US drives, according to the U.S. Department of 

Transportation’s Federal Highway Administration (2018), around 13.500 miles every year, so 

even being conservative the average citizen will save several thousand dollars each year. 

The number of accidents that could be avoided have been analysed, but the total cost of these 

accidents considering medical expenses, productivity loses, legal costs, insurance 

administrative costs, congestion, property damage and emergency service costs is over 242 

billion dollars (304 billion dollars adjusted for inflation) according to a report by the National 

Highway Traffic Safety Administration (Blincoe, L. J., Miller, T. R., Zaloshnja, E., & 

Lawrence, 2015). 

Considering the trend in the industry and the clearly declining cost curves discussed previously, 

the future of autonomous mobility is electric, this will result in other indirect savings. Pollution 

in cities is a known issue, and it is very difficult to quantify, but accordingly to the American 

Lung Association  (Holmes-Gen & Barret, 2016),  for every gallon of gasoline used in the U.S. 

there is an associated $1.15 in health damage costs, like heart attacks, lung cancer and societal 

damage related to climate change. Considering that in 2020 123.73 billion gallons of driving 

gas were consumed in the United States (U.S. Energy Information Administration, 2021b), the 

potential savings according to the American Lung Association are in the tens of billions of 

dollars per year once the transition has happened. 

In terms of public costs and potential tax savings, another source of reduction in capital 

investment it would be existing plans of road expansion and improvements, because the 
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platooning feature could increase by a factor of five the road capacity (Fernandes & Nunes, 

2012) this would definitely reduce the necessary investment in infrastructure. 

There are many other costs that are not being taken into account or that are difficult to calculate, 

but it is clear that people will have more disposable income which they will use to buy products 

on other industries, boosting these industries in a very significant way. 

4.3.4 Time savings 

Not everything in life is about economic savings, the most relevant non-renewable resource 

people have is time, and driving takes a lot of time of people’s lives. Not only that, but it also 

requires focus, energy and in many instances creates frustration. The average US citizen spends 

around 230 hours commuting every year (United States Census Bureau, 2021),  that is more 

than 9 full days just commuting. 

A study by Daniel Kahneman & Alan Kruger (2006),  revealed that for women commuting was 

the least pleasurable activity in their daily lives right after housework and childcare. A negative 

correlation has also been found between commute time and people’s wellbeing (Hilbrecht et 

al., 2014),  where people with longer commutes tended to have lower satisfaction in life. But 

there are other studies (Dyck & Gimpel, 2005; Humphreys et al., 2013; Sandow, 2019; van 

Ommeren & Gutiérrez-i-Puigarnau, 2011),  also link long commutes to high blood pressure, 

back and neck pain, depression, divorce, obesity, high cholesterol, death, being less likely to 

vote, being more likely to be absent from work, less likely to get out of poverty and kids being 

more likely to have emotional problems. 

In the near future most of these issues will be mitigated thanks to autonomous driving because 

commuting will no longer be a high focus activity but a relaxed one where entertainment is the 

main activity. Driving may go from generating frustration to becoming working or social time. 

This will also be amplified with the growing adoption of remote work, fully or partial. The new 
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time available will result in productivity gains to the economy, as some of this time is devoted 

to productive activities. 

4.3.4 Employment 

A lot of the benefits detailed previously come at a cost, the job of a lot of individuals whose 

jobs nowadays consist of the transportation of people of goods, both short and long distances. 

This people would lose their livelihood during the process of mass adoption of autonomous 

vehicles. Even more people would lose their jobs because there are indirect jobs created 

because of the numbers of cars, mainly in manufacturing and maintenance (Crayton & Meier, 

2017)  

Nonetheless other industries would experience an opposite fate and grow significantly, 

according to Godsmark et al, (2015) the sectors of IT product and services, conversion parking 

construction and roads modification would be highly benefited from this transformation in the 

economy. Training of people from one industry to another will be crucial to ensure their 

wellbeing and that enough skilled workers are available to carry out the jobs needed to adapt 

cities to the new reality.  

4.4 Environment 

Right now, there are around 238 million cars and light trucks in the United States alone (United 

States Department of Transportation, 2021),  and according to the Union of Concerned Scientist 

(2014) it is the largest single source of carbon monoxide and the second largest source of 

hydrocarbons and nitrogen oxides. In 2013 transportation accounted for half of the carbon 

monoxide and nitrogen oxides and a quarter of hydrocarbon (Union of Concerned Scientist, 

2014). Each gallon of gasoline emits 18.74 pounds of CO2 into the atmosphere (U.S. Energy 

Information Administration, 2021a). Which seems contra intuitive because it is producing 

more mass in emissions than the mass of the fuel itself, the reason for this is because during 
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combustion each carbon combines with oxygen from the air (U.S. Energy Information 

Administration, 2021c). The total fuel consumption savings could be up to 45% in an optimistic 

scenario and around 30% savings in a pessimistic one (Chen et al., 2019). 

Another important factor in car related pollution, especially in cities, is PM 2.5 particles, which 

are fine particulate matter that are two and half or less microns in width. According to the 

World Health Organization (2013), these particles are directly related with respiratory and 

cardiovascular morbidity, aggravation of asthma, respiratory symptoms, increase in hospital 

admissions and increased mortality from cardiovascular and respiratory diseases and lunch 

cancer. Even more worrisome is the fact that there is no evidence of a low level of exposure or 

threshold where no negative effects on health occur (Kelly & Fussell, 2015). 

The effect that these particles have on the human body is not negligible, according to (Correia 

et al., 2013), epidemiological evidence was found about the damage of PM 2.5 particles on 

human respiratory system. The conclusion of the 7-year study was that for every 10 μg/m3 

decrease of concentration in the year the average lifespan is extended by 0.35 years. Another 

study, to (Center for Disease Control and Prevention, 2019), also stated that reducing by 10% 

the PM 2.5 emissions in the United States could save up to 13.000 deaths per year. 

A study done in 1996 (Gillies et al., 2001), on The Sepulveda Tunnel in Los Angeles revealed 

that  approximately an average vehicle emits 0.052 grams of PM 2.5 particles per kilometre. 

Only that year, 1996, in the United States, 125.840 tons of PM 2.5 particles were emitted 

considering the 2.42 trillion miles driven that year (U.S. Department of Transportation, 2021) 

Obviously, the emissions per car are lower nowadays thanks to better technology and 

regulation, but people are driving 33% more (U.S. Department of Transportation, 2021), and 

is not possible to make everyone comply with the rules. According to (Anenberg et al., 2017), 
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excess emissions from diesel vehicles which were exceeding certification limits were 

associated with the death of 38.000 people globally in 2016 alone. 

The transition to electric vehicles will therefore mitigate a lot of the negative aspects of the 

current transportation system, especially considering the growth and current investment in 

renewable energy. This growth is mainly driven by the fast decrease in costs in the recent years, 

following the previously explained Wright’s law. 

4.4.1 Tesla’s role 

Tesla publishes every year their Impact Report (Tesla, 2021c) where they share some of their 

contribution for helping to “accelerate the world’s transition to sustainable energy”, as their 

mission states. Thanks to their cars being electric and their solar panels they have avoided the 

emission of 5 million metric tons of CO2 into the atmosphere in 2020 alone. This figure is 

undoubtedly small in comparison to the 36.44 billion tons which is the total global emissions, 

but Tesla is aware of this and therefore they have much higher goals in mind. Their goal in 

2030 is to produce 20 million cars annually, compare to the 0.5 million in 2020, and deploy 

1500 GWh of energy storage, compared to the 3GWh in 2020. 

Their approach is to create an ecosystem, a flywheel where every element supports the others, 

as depicted in Figure 8. In order to achieve their goal, they need to continue excelling in areas 

like material science, manufacturing, and software. Improvements in these areas not only make 

sense for the product and the planet but also economic sense.  
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Figure 9: Tesla's ecosystem (Tesla, 2021c) 

The improvements in battery technology must focus on cost, recyclability, low degradation so 

they can build more energy storage, with the objective that renewable energy can become a 

higher percentage of the energy grid. On the cars side Tesla knows that the replacement rate of 

cars is very low, so in order to disrupt the industry and transition as soon as possible to EVs 

they knew they had to make autonomous ride-hailing more attractive than using your own 

existing car. Users will mainly use it because of a mix of convenience, lower cost and doing 

the right thing for the environment. 

Tesla’s cars are already much better for the environment that the current internal combustion 

engine competition, as shown in Figure 9, this is considering the entire lifecycle of the product, 

considering manufacturing and use phase. It is very interesting than the ridesharing version has 

a much lower manufacturing costs, this is because it would be substituting multiple personal 

use cars.  



49 

 

 

Figure 10: Average lifecycle emissions in Europe Tesla Model 3 vs ICE (Tesla, 2021c) 

 

Manufacturing is another big element in the equation, first because for EVs the manufacturing 

phase represents a big part of the total emissions of the car if the standard grid is used, or all of 

the emissions in the case the car is being charged by solar. Therefore, Tesla have been 

improving the efficiency of their plants and are focused on production and supply chain 

localization. They are now finishing their factory in Berlin for Europe and the factory for Asia 

in Shanghai already started production in 2019. 

4.5 Real World AI 

The AI technology developed for the purpose of autonomous driving may have even more 

impact in people’s lives in the future if it is applied to other industries. The main building block 

of this technology is their image recognition neural network. The first step for AI to interact in 

the real physical world is to understand it, the world is visually very complex, there are many 

agents on every situation, both humans, objects, and machines, being able to differentiate and 

understand that will be key for kickstarting the next revolution in Real World AI. 
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Tesla is already doing an important part of what it is understood as intelligence, as they show 

in the “AI Day” (Tesla, 2021b), their technology is already perceiving the real world, but the 

simpler context of a road, planning the possible options to achieve its goal, evaluating the 

different alternatives, and executing, all this is happening hundreds of times each second, 

allowing the car to react and adapt to changes in the environment. As Elon stated “A major 

part of real-world AI has to be solved to make unsupervised, generalized full self-driving work” 

(Musk, 2021), and they are quite close to solve this, which means that a big part of the work is 

done already. 

The combination of their neural networks, their Full Self Driving computer, sensors, batteries, 

actuators and Dojo, their supercomputer designed for AI training, can be what finally unleashes 

AI into the real world. This is why their humanoid robot was presented in “AI Day”, and a 

prototype may be ready at the end of 2022. The requirements for this robot would be the ability 

to navigate the world and carry out boring, dangerous, or repetitive tasks. Their presentation 

had the main objective of attracting even more talent to the company in order to bring this idea 

into reality. 

This first use case of “Real World AI” would improve productivity tremendously, the impact 

it would have on the economy is difficult to predict, but it could be bigger than the internet. 

Thanks to the industrial revolution many tasks passed from humans to machines, increasing 

the productivity and lowering the costs like never before, which resulted in the increase of 

human well-being all over the world. There were some tasks that machines were not able to 

automate, but this technology has the potential of automating a significant percentage of the 

physical tasks that humans perform nowadays. This revolution and the technology adoption 

will take some decades, it is not happening next year or this decade but it is inevitable if the 

technology and cost curve trends are analysed. The same happened with electric vehicles in the 
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last decade, it was unstoppable, no amount of media or politicians’ manipulation could stop it, 

and anyone who analysed the issue from an objective point of view saw it coming. 

5. Adoption and economic impact model 

The practical part of this master thesis consists of a simulation model for the rate of adoption 

and economic impact that the deployment of the Robotaxi network may have. The model is 

flexible and the user can edit the input variables of the model, this is crucial because there is a 

wide range of opinions on many of the most relevant variables, and it is important for the model 

to be able to adapt to the different possible scenarios.  

The objective it is not to predict the future but creating a model where everyone can input their 

predictions and get the potential results in return. Nevertheless, for analysing the output of the 

model conservative input data will be used, this data is based on Tesla’s projections, electric 

vehicle experts, the current state of the technology and the industry’s competitive landscape. 

5.1 Methodology 

5.1.1 Monte Carlo simulation 

Stanislaw Ulam and John von Neumann developed a mathematical technique for estimating 

the probability of outcomes of an uncertain event in the context of World War II (IBM Cloud 

Education, 2020). The name for this multiple probability simulation approach derives from the 

city of Monaco, famous for its casino, mainly because both the casino and the technique rely 

on the introduction of random variables to achieve their objective (Johansen, 2010) 

 Monte Carlo simulations have been implemented in many different industries such as finance, 

sales, engineering, science, logistics, etc. (Amar, 2006; Banomyong & Sopadang, 2010; 

Kalkhoran & Glantz, 2015; Manly, 2018). There is uncertainty, ambiguity, and variability in 

every aspect of life and work, and simulation of the different possible outcomes, based on a 
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predefined set of input variables with a probabilistic distribution, gives a very useful outlook 

on the potential risks and opportunities to take better decisions. 

It is a very appropriate tool for model with complex structures, where there are many variables 

that influence each other and also outside factors which are difficult or impossible to predict. 

For this type of model traditional techniques are not capable of estimating to the same degree 

the infinite range of possible outcomes. 

The model created requires that assumptions are developed about the probability distribution 

of the relevant variables which have an inherent uncertainty. There are many kinds of 

probability distributions, in the Wikipedia (2021) page for “List of probability distributions” 

there are over 180 distributions listed. The most common one, which is the one used in this 

model, is the normal distribution, also known as Gaussian or “bell curve”. The user simply 

defines the mean and standard deviation for the distribution. It is symmetric, and many things 

in nature and society follows this distribution. 

For each input variable also maximum and minimum have been introduced as a safeguard to 

make sure that each simulation is inside the realm of possibilities. There are also variables that 

have clear limits because of their nature, for example prices can’t be negative, Robotaxi 

deployment date can’t be in the past, or there are some values that are so unlikely that should 

not be considered. 

A very important advantage of the Monte Carlo simulation over other modelling techniques is 

that not only outputs what is possible but how likely it is to happen. Since the whole model is 

represented in numerical data structures it is very easy to generate a visual representation of 

the results, which is very useful for sharing the insights generated with other stakeholders in 

the project.  
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This is out of the scope of the current project, but a sensitivity analysis can be carried out on 

the input variables, this way it is possible to identify which ones have the biggest influence, 

which is a very important insight for better decision making.  

There are some known disadvantages of the Monte Carlo simulation method, one significant 

aspect is that it is computationally inefficient, this is relevant for big and complex models, 

where the large amount of variables may require a lot of time to output the results. It should 

also be considered that the input variables and their relationships must be carefully developed 

because the technique is very sensitive, the quality of the output relies heavily on the quality 

of the input.  

5.1.2 Python model 

The programming language chosen to carry out the simulation is Python after careful research 

considering both the interests of the project and personal. The reasons for the selection of this 

language as the basis for the model are the following.   

It is one of the most used programming languages in the world (Stack Overflow, 2020), this 

means that the ecosystem builds around it is mature, the documentation is of very high quality 

and there is a huge community of developers that have written tutorials, answered questions, 

created courses, etc. 

It is a very high-level programming language, which means that it is easy to read. This is 

relevant in the context of a master thesis, since this will help other people to build on top of 

this project and also understand, use, or edit the model itself. The significant indentation forces 

the developer to keep the code tidier, which combined with the simple syntax makes it a very 

good choice for the project. 

There are a seemingly infinite number of libraries, but the ones for data science and data 

manipulation are very robust and have a proven track record. The module for Statistical 
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functions from the library SciPy has been used is used in this project to generate the random 

probability distribution for the input data. The main data structure use for the model is 

DataFrame by the library pandas, which is a two-dimensional tabular data object, made for 

data manipulation and includes indexing out of the box. This library has also been used to read 

the input data from CSV files. The other relevant library used is Matplotlib, a very powerful 

plotting library, which generates the necessary graphs to visualize the output of the model in 

order to draw insights from them. All these libraries have a very large set of tools and functions, 

only a tiny fraction of those, the necessary ones for the project have been used. 

Python can be used for multiple applications, not only data science or data analytics, but it is 

also very powerful language for web development, with the use of frameworks like Django or 

Flask state of the art web applications can be developed. This also would allow to easily 

replicate the Monte Carlo simulation model in an interactive website, which would be 

beneficial for sharing purposes. Other relevant applications for python include artificial 

intelligence, game development, automation, software development, etc. 

Interactive computing is a very powerful tool for any data exploratory project, it helps with the 

visualization, sharing and editing of the executable code for rapid testing and prototyping. The 

software chosen for this was Jupyter Notebook, where the model was developed, allowing for 

a step by step run of the model for visualizing and understanding how it was developed. The 

software consists of a shareable web application which supports executable code, visualization, 

and comments. 

5.2 Model description  

The Monte Carlo simulation has been used before in the finance industry for modelling 

complex systems with high uncertainty before (Mcleish, 2005) this is why it was a good fit for 

this project 
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5.2.1 Variables 

Number of simulations 

The first variable which will be discussed is the number of simulations; the more simulations 

the better results because of the Monte-Carlo technique, but it must be considered that 

simulation time is not linear because of the data structure and calculations. Therefore, it is 

advisable to use a lower number of simulations to test multiple situations and set a high number 

once you find a configuration that you want to analyse in detail. 

Years to simulate 

The next variable explained is the timespan simulated, so the years, the farther into the future 

the less accurate the results will be because more unexpected events or changes in the industry 

may occur. This is why up to 2030 is a good timespan, this is even the last year where guidance 

has been given by Tesla regarding their production goal. 

Regions or areas 

Only relevant “regions” will be considered for this analysis: USA, China, Europe, Canada & 

APAC excluding China. This are the areas with the most potential in the short to medium term 

because of purchasing power and current factories developed or being developed in the area.  

Price per mile 

Regarding the economic repercussions of the Robotaxi network, the price will pay a big role, 

so the price per mile must be chosen carefully considering the competitive environment, 

expected demand and pricing power of Tesla. The price per mile for China & APAC is 

independent because this market is much more competitive, it has different regulations and 

most importantly, lower salaries for drivers, so in order to be stay competitive the service will 

most probably need to have a significantly lower price. Europe, USA, and Canada have a very 

similar market; therefore, the Price/Mile can be supposed to be the same in order to simplify 
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the model. The price will adapt to offer and demand, just like the current system that Uber has, 

but the average expected price must be estimated. 

Cost per mile 

In order to know what is the expected profit that the car owners may have once the service is 

deployed, it is necessary to try to estimate what will their costs be, which would include the 

depreciation of the car, electricity, and maintenance. These costs are much lower than the 

equivalent for an internal combustion engine car, but they are relevant and must be taken into 

account. According to Tesla (2019b) the average cost to run a Robotaxi should under $0.18 

dollars including the necessary overhead. 

Platform fee 

Tesla will take a cut out of the price of the service; this platform fee will directly impact the 

revenue of the company. This number will heavily depend on the demand and competitors in 

the areas of operation, because it represents a significant portion of the final price. Most 

probably it will be similar to the cut that platform like app stores take currently from the apps, 

which is around 30%, but it could be higher, especially in the first years of operation. 

Operation time 

The service will not operate 24 hours per day, because there is no demand for it and cars needs 

time for charging for instance. Therefore, the expected average hours of operation per day for 

cars in the network must be estimated. Personal use of the car by the owner and the time of low 

demand should be considered. Some users may not put their cars into the network to the 

network for various reasons, travelling, emergencies, busy day, etc. So, the days per week is 

another variable to take into account. 
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Miles per hour 

The amount of miles that the cars will do during operation needs to be calculated, in order to 

achieve this, a simple but accurate way is to use the average miles/hour that the Robotaxis will 

have during the service. It needs to be taken into account how much of the traffic will be in 

inner cities and between cities because this would radically change the result. 

Occupancy rate 

Uber is taking clients approximately 40% of the time, the rest is what it is called “deadheading” 

(California Air Resources Board, 2019), when the car is circulating but without any client on 

board, waiting for the next ride to be booked. Tesla Robotaxi network will have the same issue, 

it is impossible for the car to be used by clients 100% of the time. Obviously with their expertise 

on artificial intelligence they will most likely develop an algorithm which will greatly optimise 

routes and balance offer and demand, but it will never be one hundred percent occupancy rate. 

Network participation 

Allowing strangers to use your car is not a common practise nowadays, in spite of the positive 

trend of similar services like carpooling, short-term rentals of main residence, it is far from 

mainstream. Not all Tesla owners will want to participate in the network, for this above-

mentioned reason, or maybe just because they don’t need the money and prefer to have their 

car available 100% of the time for themselves. Taking these facts into consideration the 

variable network participation is being use. 

Average car lifespan 

Cars have a finite service life, according (Held et al., 2021) the average lifespan of cars in 

Western Europe is 18,1 years. ICE cars are complex machines with thousands of moving 

pieces, whereas electric cars car very few moving pieces. The battery is anyway, most 

probably, the main point of failure because of degradation. Currently the average capacity 
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retention after 200.000 miles rounds the 90% (Tesla, 2021c), which is optimistic, which 

combined with improvements in battery technology will make electric cars last for a long time, 

Tesla’s objective is to build in the near future the “million miles battery” (Shirouzu & Lienert, 

2020). Using the average car lifespan, the cars are discontinued and subtracted from the 

available cumulative car count. 

Production distribution 

Each region will have a different delivery distribution based on demand, strategic decisions, 

and average selling price. This is why there is a need to put into numbers the production 

distribution which will be sold in each area.  

Production growth 

The most relevant metric for the future of Tesla is production growth, over the years analyst 

have failed to assess the growth of Tesla, only in the last two years they have started to see the 

exponential trend in Tesla’s production capacity. According to their guidance, they plan to 

grow around 50% in the coming years, with the goal of producing 20 million cars in 2030 

(Tesla, 2020). Based on this it must be decided what is the probability distribution for the future 

production projected growth. 

Tesla can produce millions of cars per year, but if they do not achieve real autonomous driving 

the potential of the Robotaxi network will not be realized. Therefore, the date for the open 

release of the fully autonomous Level 4 driving automation ride-hailing network is relevant for 

the rate of adoption of the technology and effects on society and competition. In terms of 

economic impact, it is not as relevant, especially in the short term, because the cumulative 

number of cars in the future will dwarf the number of cars available in the short term because 

of the growth in production. 
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Table 7: Monte-Carlo simulation model variables properties 

Variable Name Number/List Probability Distribution 

Number By year By area 

Simulations x    

Years x    

Regions x    

Price/Mile  x   

Price/Mile for APAC & 

China 

 x   

Cost/Mile  x   

Platform Fee  x   

Hours/Day  x   

Days/Week  x   

Miles/Hour  x   

Occupancy Rate  x   

Network Participation  x   

Car Lifespan  x   

Production Distribution    x 

Production Growth   x  

Robotaxi Deployment  x   
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5.2.2 Calculations 

Miles per car 

Combining multiple variables defined previously it is possible to create a new metric for each 

simulation which is very useful for the calculation of other results, this is the miles per car per 

year that the Robotaxis are being use by clients, and the formula would be the following: 

𝑀𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑐𝑎𝑟 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 = 52
𝑤𝑒𝑒𝑘𝑠

𝑦𝑒𝑎𝑟
∗

𝐷𝑎𝑦𝑠

𝑤𝑒𝑒𝑘
∗

𝐻𝑜𝑢𝑟𝑠

𝑑𝑎𝑦
∗

𝑀𝑖𝑙𝑒𝑠

ℎ𝑜𝑢𝑟
∗ %𝑜𝑐𝑢𝑝𝑎𝑐𝑦 

Car production 

In order to get a correct probability distribution for the production distribution per area, what 

it has been used is function which divides each area percentage by the total sum of all of them 

for each simulation. This produces a result with almost the same average and standard deviation 

as the input. 

def get_standarise_percentages(dictionary): 

    for year in years: 

        for i in simulation_list: 

            total_sum=0 

            for area in dictionary.keys(): 

                total_sum+=dictionary[area][year][i] 

            for area in dictionary.keys(): 

                dictionary[area][year][i]=dictionary[area][year][i]/total_sum 

    return dictionary  

Once the growth projection and production for 2021 is available the future production can be 

calculated. This is as simple as simulating the growth per year based on the probability 

distribution provided by the user and using this to increase production each year by that amount 

using 2021 as the first value. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛[𝑦𝑒𝑎𝑟][𝑖] = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛[𝑦𝑒𝑎𝑟 − 1][𝑖] ∗ 𝐺𝑟𝑜𝑤𝑡ℎ [𝑦𝑒𝑎𝑟][𝑖] 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝐴𝑟𝑒𝑎[𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖]

= 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛[𝑦𝑒𝑎𝑟][𝑖] ∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖] 
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Discontinued cars 

Once production has been calculated, the combination of this variable with the average lifespan 

of the cars, which is one of the input variables, outputs the discontinued cars per year. Since 

the number of average lifespan years is a rational number and not a whole number, the share 

of production to the decimal part must be taken into account too, which would correspond to 

the previous year. 

𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑌𝑒𝑎𝑟[𝑖]  =  𝑦𝑒𝑎𝑟 −  𝐹𝑙𝑜𝑜𝑟 (𝐴𝑣𝑔 𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛[𝑖]) 

𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑌𝑒𝑎𝑟[𝑖] =  𝐴𝑣𝑔 𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛[𝑖] % 1 

𝐷𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑑 𝐶𝑎𝑟𝑠 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖]

= 𝑃𝑟𝑜𝑑𝑢𝑐𝑖𝑜𝑛  [𝑎𝑟𝑒𝑎][ 𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑌𝑒𝑎𝑟[𝑖] ][𝑖] ∗ (1 − 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑌𝑒𝑎𝑟[𝑖])

+ 𝑃𝑟𝑜𝑑𝑢𝑐𝑖𝑜𝑛[𝑎𝑟𝑒𝑎] [𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑌𝑒𝑎𝑟[𝑖] − 1 ][𝑖] ∗ 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑌𝑒𝑎𝑟[𝑖]  

Cumulative cars 

Once the two previous metrics are ready it is very easy to calculate the cumulative number of 

cars by Tesla on the road. 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑎𝑟𝑠 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖]

=  𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑎𝑟𝑠 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟 − 1][𝑖] + 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝐴𝑟𝑒𝑎[𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖]

− 𝐷𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑑 𝐶𝑎𝑟𝑠 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖]  

Robotaxi deployment date 

In order to simulate the Robotaxi deployment date it is necessary to convert the input data for 

the probability distribution into timestamps which can be simulated with the function 

developed for obtaining the random values based on the input. The function 

datetime.timestamp is used to get the Unix time for the dates. Once it has been converted to 

Unix time and done the simulation, it is possible to convert it back to regular datetime type for 

later use in the model as the time axis. 
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Robotaxi miles 

A very relevant metric, which is quite easy to compute with the variables and calculations 

explained, is the total amount of miles driven by the Tesla Robotaxi network. In this formula, 

Percentage Robotaxi per Year is the amount of Robotaxi time deployed per year, to account 

for the right percentage the year of deployment and no Robotaxi the years previous to that one. 

𝑅𝑜𝑏𝑜𝑡𝑎𝑥𝑖 𝑀𝑖𝑙𝑒𝑠 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖]

= 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑎𝑟𝑠 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖] ∗ 𝑀𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝐶𝑎𝑟 [𝑖]

∗ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 [𝑖] ∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑅𝑜𝑏𝑜𝑡𝑎𝑥𝑖 𝑝𝑒𝑟 𝑌𝑒𝑎𝑟 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖] 

Tesla’s revenue 

In terms of economic impact, the first output which will be discussed is the revenue for the 

company, the formula for it is the following: 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖]

= 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑀𝑖𝑙𝑒[𝑖] ∗ 𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝐹𝑒𝑒[𝑖] ∗ 𝑅𝑜𝑏𝑜𝑡𝑎𝑥𝑖 𝑀𝑖𝑙𝑒𝑠[𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖] 

Car’s owner revenue 

A very similar output is the car’s owner revenue. According to Tesla this figure should be 

around 30.000$ per year and it is also a simple calculation: 

𝐶𝑎𝑟′𝑠 𝑜𝑤𝑛𝑒𝑟 𝑅𝑒𝑣𝑒𝑛𝑢𝑒[𝑖]

= 𝑀𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝐶𝑎𝑟[𝑖] ∗ (𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑀𝑖𝑙𝑒[𝑖] ∗ (1 − 𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝐹𝑒𝑒[𝑖])

−  𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑀𝑖𝑙𝑒 [𝑖]) 

Robotaxi miles over VMT in the US 

Some of the metrics calculated allow for the estimation of interesting outputs very easily. A 

good example is to calculate the percentage of Vehicles Miles Travelled (VMT) in the US. To 

make it more realistic, in the simulation an ARIMA model has been used to predict the future 
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VMT based on the data from 1970 until 2019 (U.S. Department of Energy, 2021), which is 

equal to 3.26 trillion miles as of 01/12/2019. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑅𝑜𝑏𝑜𝑡𝑎𝑥𝑖 𝑜𝑣𝑒𝑟 𝑉𝑀𝑇 [𝑦𝑒𝑎𝑟][𝑖] =
𝑅𝑜𝑏𝑜𝑡𝑎𝑥𝑖 𝑀𝑖𝑙𝑒𝑠[′𝑈𝑆𝐴′][𝑦𝑒𝑎𝑟][𝑖]

𝑉𝑀𝑇[𝑦𝑒𝑎𝑟]
    

CO2 saved 

The tons of CO2 saved have also been calculated. This calculation is supposing that the 

Robotaxi miles are replacing internal combustion engine cars. The first step was to get the 

difference in CO2 emission per mile driven, considering the total lifecycle and electric grid mix, 

between internal combustion engines (Bieker, 2021) using this data it is trivial to calculate the 

tons of  CO2 saved by the Robotaxi Network. 

𝐶𝑂2𝑠𝑎𝑣𝑒𝑑[𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖]

= 𝑅𝑜𝑏𝑜𝑡𝑎𝑥𝑖 𝑀𝑖𝑙𝑒𝑠[𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖] ∗ (𝐶𝑂2𝐼𝐶𝐸 𝑝𝑒𝑟 𝑀𝑖𝑙𝑒 − 𝐶𝑂2 𝐸𝑉 𝑝𝑒𝑟 𝑀𝑖𝑙𝑒) 

CO2 saved over CO2 produced 

Once the CO2 saved is calculated it is easy to find out what percentage of the total CO2 

emissions by region, using 2021 context (Ritchie & Roser, 2020), which will not be emitted to 

the atmosphere. This gives a good perspective on the potential impact for the environment. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐶𝑂2 𝑠𝑎𝑣𝑒𝑑 𝑜𝑣𝑒𝑟 𝑡𝑜𝑡𝑎𝑙 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖] =
𝐶𝑂2 𝑠𝑎𝑣𝑒𝑑 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖]

𝐶𝑂2 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑[𝑎𝑟𝑒𝑎]
   

Economic savings derived from health-related issues 

As it has been previously exposed in the implications the pollution in cities have not also a 

health impact in people’s lives but also an economic one because of the medical help required. 

According to Holmes-Gen & Barret (2016), each gallon of gas has an extra cost of $1.3. 

Considering this data, it is possible to calculate the savings on just this metric by adding the 

average miles per gallon consumption into the equation, which is 25.4 (United States 

Environmental Protection Agency, 2021). 
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𝑆𝑎𝑣𝑖𝑛𝑔𝑠 𝑃𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑈𝑆𝐴 [𝑦𝑒𝑎𝑟][𝑖]

= 𝑅𝑜𝑏𝑜𝑡𝑎𝑥𝑖 𝑀𝑖𝑙𝑒𝑠 [′𝑈𝑆𝐴′][𝑦𝑒𝑎𝑟][𝑖] ∗
1.3

25.4
∗ (𝐶𝑂2𝐼𝐶𝐸 𝑝𝑒𝑟 𝑀𝑖𝑙𝑒

− 𝐶𝑂2 𝐸𝑉 𝑝𝑒𝑟 𝑀𝑖𝑙𝑒)/𝐶𝑂2𝐼𝐶𝐸 𝑝𝑒𝑟 𝑀𝑖𝑙𝑒 

Cars displaced per year 

According to the U.S. Department of Transportation Federal Highway Administration (2018), 

the average miles driven per year per driver are 13476, which means that the calculation the 

numbers of cars displaced by the Robotaxi network can be done. This metric is not perfect 

because the driven miles will increase because of the cheaper price and easier access to 

transportation, but it is still a good indicative of the potential impact of the service. 

𝐶𝑎𝑟𝑠 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 [𝑦𝑒𝑎𝑟][𝑖] =
𝑅𝑜𝑏𝑜𝑡𝑎𝑥𝑖 𝑀𝑖𝑙𝑒𝑠 [′𝑈𝑆𝐴′][𝑦𝑒𝑎𝑟][𝑖]

13476
    

To calculate the capability for displacement that each Robotaxi car has metric the number of 

Robotaxis in the network have been calculated. 

𝑅𝑜𝑏𝑜𝑡𝑎𝑥𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 [𝑦𝑒𝑎𝑟][𝑖]

= 𝐶𝑢𝑚𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑎𝑟𝑠 [′𝑈𝑆𝐴′[𝑦𝑒𝑎𝑟][𝑖] ∗ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 [𝑖]    

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡[𝑦𝑒𝑎𝑟][𝑖] =
𝐶𝑎𝑟𝑠 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑[𝑦𝑒𝑎𝑟][𝑖]

𝑅𝑜𝑏𝑜𝑡𝑎𝑥𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘[𝑦𝑒𝑎𝑟][𝑖]
   

Potential time savings 

Once people do not need to pay attention by driving, many hours will suddenly become 

available, these hours will devoted be to entertainment, work, social time, etc. In the US the 

average driver spends 50.6 minutes driving every day, which is equal to almost 13 days and 

around 3.5% of the time (Tefft, 2017). Using the Robotaxi miles and average miles per hour  

the time that will become available is calculated. 

𝐻𝑜𝑢𝑟𝑠 𝑠𝑎𝑣𝑒𝑑[𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖] =
𝑅𝑜𝑏𝑜𝑡𝑎𝑥𝑖 𝑀𝑖𝑙𝑒𝑠 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖]

𝑀𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 [𝑖]
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Maximum potential GDP increase 

With the new time available for the drivers, this time will definitely not be used in its entirety 

for work, but if it was, the potential extra GDP is a very interesting metric on the magnitude of 

the impact this technology would have. The only other data needed is the GDP (The World 

Bank, 2021) and GDP per hour worked (OECD, 2021; The Conference Board, 2018) for the 

regions. 

𝐸𝑥𝑡𝑟𝑎 𝐺𝐷𝑃[𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖] = 𝐻𝑜𝑢𝑟𝑠 𝑠𝑎𝑣𝑒𝑑 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖] ∗ 𝐺𝐷𝑃 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟[𝑎𝑟𝑒𝑎]    

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 % 𝐺𝐷𝑃 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖] =
𝐸𝑥𝑡𝑟𝑎 𝐺𝐷𝑃 [𝑎𝑟𝑒𝑎][𝑦𝑒𝑎𝑟][𝑖]

𝐺𝐷𝑃 [𝑎𝑟𝑒𝑎]
     

5.3 Input data 

The model needs some input data, conservative values have been chosen in order to portray a 

realistic view of the potential. All variables have four values for describing the normal 

probability distribution, minimum and maximum possible value, and “bear” and “bull” which 

correspond to the values one standard deviation to the left and right of the average. 

Table 8: General inputs for the Monte-Carlo model 

 
Min Bear Bull Max 

Price/Mile 0.7 0.8 1.2 1.7 

Price/Mile Asia 0.5 0.66 0.8 1.1 

Costs/Mile 0.1 0.15 0.25 0.3 

Platform fee 0.15 0.25 0.35 0.45 

Hours/day 6 8 13 16 

Days/week 4.5 5.6 6.5 7 

Miles/hour 10 13 17 20 

% occupancy 0.35 0.45 0.65 0.69 

Network Participation 0.2 0.25 0.35 0.4 

Car Lifespan 8.5 9 11.5 13 

 

Table 9: Deployment date input for the Monte-Carlo model 

 
Min Bear Bull Max 

USA 01/09/2022 01/07/2023 01/10/2024 01/01/2029 

Canada 01/03/2023 01/10/2023 01/12/2024 01/01/2029 
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Europe 01/08/2023 01/08/2024 01/12/2025 01/01/2030 

China 01/03/2023 01/12/2023 01/02/2025 01/01/2030 

APAC excl 
China 

01/08/2023 01/05/2024 01/08/2025 01/01/2030 

 

Table 10: Projected production growth input for the Monte-Carlo model 

 
Min Bear Bull Max 

2022 0.4 0.55 0.7 0.8 

2023 0.39 0.5 0.66 0.75 

2024 0.37 0.43 0.6 0.65 

2025 0.35 0.4 0.55 0.62 

2026 0.3 0.38 0.49 0.55 

2027 0.18 0.25 0.4 0.4 

2028 0.11 0.18 0.31 0.35 

2029 0.07 0.12 0.17 0.22 

2030 0.05 0.09 0.15 0.2 

2031 0.04 0.08 0.13 0.17 

2032 0.035 0.075 0.1 0.15 

2033 0.03 0.07 0.09 0.13 

2034 0.025 0.06 0.08 0.1 

2035 0.02 0.05 0.07 0.09 

2036 0.015 0.04 0.06 0.08 

2037 0.01 0.03 0.05 0.07 

2038 0.005 0.02 0.04 0.06 

2039 0.005 0.01 0.03 0.05 

 

Table 11: Production area distribution for the Monte-Carlo model 

 
Min Bear Bull Max 

USA 0.27 0.3 0.35 0.38 

Canada 0.005 0.008 0.012 0.016 

Europe 0.22 0.25 0.35 0.38 

China 0.23 0.265 0.373 0.38 

APAC excl 
China 

0.01 0.03 0.065 0.072 

 

The last input has no probability distribution because it is based on historical data that is 

publicly available. Only the production for Q4 2021 was estimated conservatively. Even 

though the total numbers are a metric released by Tesla, the distribution by region is provided 

by Troy Teslike (2021), an analyst with great track record in regard to Tesla production. 
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Table 12: Production history for the Monte-Carlo model 

 
USA Canada Europe China APAC 

excl 
China 

Total 

2017 49367 3478 28279 14829 7228 103181 

2018 189577 8862 29257 15029 2781 245506 

2019 184130 18852 111119 41298 12257 367656 

2020 204235 22624 98934 146813 27041 499647 

2021 338029 32224 174260 263324 50163 858000 

 

 

Figure 11: Historic Tesla production by area 

 

5.4 Model output and discussion  

Based on the input data and the calculations exposed previously, the following output has been 

obtained. The input data has a probability distribution, which means that the results have it too. 

This is the reason the graphs represent the average, bear, and bull scenario. The bear and bull 

scenarios calculated with the first and third quartile respectively. 
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5.4.1 Tesla’s production 

 

 

Figure 12: Projected Tesla's production 

As established previously, the growth in the next few years is quite strong, around the 50% that 

Tesla predicts for the coming years (Tesla, 2020), but then it heavily reduces. The global 

production in 2030 is around 15 million, three quarters of Tesla’s goal of 20 million (Tesla, 

2021c). According to this simulation Tesla would become the largest car manufacturer in the 

world in 2028, since the biggest manufacturer right now is Toyota with over 10 million cars 

produced (International Organization of Motor Vehicle Manufacturers, 2018). 
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5.4.2 Discontinued cars 

The discontinued cars take some years to start ramping up because it is based on the average 

car’s lifespan and the lowest are several years. 

 

 

Figure 13: Projected Tesla's discontinued cars 
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5.4.3 Cumulative cars 

Combining the two previous results the cumulative cars are obtained. This is the most relevant 

metric, because the available Tesla fleet is a key metric in the model. 

 

 

Figure 14: Projected Tesla's cumulative cars 

The adoption of the Robotaxi network relies heavily on this forecast because the moment the 

Robotaxi deployment occurs on the different areas, millions of cars will suddenly join the 

network, therefore, production is the main driver for this figure. According to the production 

estimates by Tesla and the expected growth after their guidance, the adoption once the 

technology is ready will grow instantly to the millions of users. Other arguments that support 

this bold statement are the economical and behavioural arguments given previously in this 

thesis about the adoption of autonomous ride-hailing as a new transportation system. 
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5.4.4 Robotaxi deployment date 

Based on the input the temporal Robotaxi deployment date distribution by region is the 

following. 

 

Figure 15: Tesla Robotaxi deployment date simulations distribution by area 

5.4.5 Robotaxi miles per year 

Making use of the cumulative cars metric and other inputs it is possible to calculate the most 

important output of the model, the total Robotaxi miles per year, this metric allows for the 

calculations of many other interesting and relevant results. 
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Figure 16: Projected Tesla Robotaxi miles 

 

5.4.5 Robotaxi miles as percentage of VMT in the US 

To assess the relevance of the simulated Robotaxi miles, it has been compared to the Vehicles 

Miles Travelled in the United States. Using the historical data (U.S. Department of Energy, 

2021) and applying a simple ARIMA model the projected VMT per year can be used to have 

a more accurate perception of the potential impact. Most probably the VMT in the future will 

be higher because of the lower cost in transport that autonomous ride-hailing represents. 

Nevertheless, it is still a useful calculation for understanding the magnitude of the impact. 
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Figure 17: ARIMA model for US VMT 

The result from this analysis it is that the Robotaxi network will have a significant effect on 

the industry because at the end of the next decade it may represent around 10% of all miles 

driven in the United States. 

 

Figure 18: Projected percentage of Robotaxi miles over forecasted VMT in the US 

5.4.6 Tesla’s revenue 

In terms of economic impact, the most important output of the model is the expected revenue 

for Tesla. This result helps to understand the potential economic opportunity that autonomous 

ride-hailing represent and explains why so many companies are investing billions of dollars 

into self-driving technology. The investment required is dwarfed by the potential revenue 

opportunity in the future if the necessary scale is achieved.  
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Figure 19: Projected revenue of Tesla Robotaxi Network 

Another important fact about this output is that most of the revenue will become profit, as the 

car owner pays for the hardware and Tesla only provides the software, which requires very 

little operational costs in comparison with the revenue. This is also highly conservative 

considering that Tesla will most probably run their own fleet of Tesla Robotaxis, this would 

require more initial capital investment into the cars, which would easily be recovered in a short 

period of time because of the recurring revenue from the service.   
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5.4.7 Car’s owner revenue 

According to Tesla the total gross profit per car per year would be around $30.000 (Tesla, 

2019b), most probably Tesla was given this metric not as an average for people in the network 

but for people with a certain time per day in the network and in densely populated areas. 

Therefore, the conservative result is reasonable. 

 

Figure 20: Projected distribution of average car's owners (not Asia) yearly revenue in the Robotaxi Network 

The Robotaxi service will have a lower price in China because of the lower salaries in the 

region and the more competitive environment in the ride-hailing industry. 

 

Figure 21: Projected distribution of average car's owners in Asia yearly revenue in the Robotaxi Network 
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Another positive data point for the car owners is that the price of the cars that the network will 

operate will be lower than the current ones because Tesla will release in the near future an even 

cheaper car than the Model 3. This has been already confirmed by Elon Musk  and the cost 

would be around $25.000 and being conservative the release date would be 2024 (Lambert, 

2021). 

5.4.8 CO2 saved 

The environment is one of the biggest concerns of society right now, and the autonomous ride-

hailing may play a relevant role on this issue, because of the lower cost they will displace 

internal combustion engine cars, and therefore pollution on those miles. Obviously not all trips 

will substitute ICE trips but considering the market share of electric cars most will. On the 

other hand, the savings will be bigger than the calculated because the data for difference in CO2 

emissions between internal combustion engine and electric cars used (Bieker, 2021) does not 

take into account the higher degree of utilization and lifespan that the Tesla Robotaxi cars will 

have or the evolution of the grid towards renewables. This result is relevant to understand the 

magnitude of the potential positive effects on the environment. 

 

Figure 22: Projected tons of CO2 saved by Robotaxi Network in Europe, USA, and China 
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This data can now easily be compared with the current CO2 emissions (Ritchie & Roser, 2020) 

of the three regions in order to see the percentage that this savings may represent in the future 

in comparison with the present pollution. 
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Figure 23: Projected percentage of emitted CO2 saved by Robotaxi Network in Europe, USA, and China 

5.4.9 Economic savings derived from health-related issues derived from pollution 

It has been previously discussed in this master thesis that the pollution has health related costs 

in society, to be more specific, for every gallon of gasoline used in the U.S. there is an 

associated $1.15 in health damage costs, like heart attacks, lung cancer and societal damage 

related to climate change (Holmes-Gen & Barret, 2016). Combining this data point average 

miles per gallon in the US (United States Environmental Protection Agency, 2021) and the 

Robotaxi miles and the supposition that it is substituting internal combustion engine trips, the 

potential savings are obtained. 

 

Figure 24: Projected economic savings in health-related pollution by the Robotaxi Network in the US 
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5.4.10 Cars displaced by Robotaxis 

Making use of the total Robotaxi miles per year in combination with the average miles driven 

(U.S. Department of Transportation Federal Highway Administration, 2018) by cars in the 

United States it is possible to simulate the cars displaced. In the graph the current total 

registered car number has been included in order to appreciate the speed at which these cars 

will be displaced. Tesla cars not in the network will also displace other ICE cars but this is not 

analysed, as the focus is the Robotaxi network. 

 

Figure 25: Projected car displacement by the Robotaxi network in the US 

In the graph it can be observed that the cars displaced by each Robotaxi in the network is higher 

than one. According to this calculation in average each Tesla car which participates in the 

Robotaxi will displace approximately two cars. The potential for displacement per car could 

be significantly higher, the conservative inputs used should be taken into account. 
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Figure 26: Projected Robotaxi displacement coefficient in the US 

5.4.10 Potential time savings 

Self-driving technology will suddenly make available a lot of time for its users, the simulated 

time saved in years for the different regions is the following. 

 



81 

 

 

Figure 27: Projected time savings by the Robotaxi network 

5.4.11 Maximum potential GDP increase 

This time will mostly be used for entertainment most probably, but it nevertheless interesting 

to see what potential this paradigm change would have if this time was used for productivity 

purposes. The hypothetical potential increase in GDP (comparing with 2020 data) because of 

the Robotaxi network would be: 
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Figure 28: Projected potential extra GDP by Robotaxi network by area 
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6. Conclusions 

Self-driving technology is possible thanks to thousands of inventors, entrepreneurs, engineers, 

and scientists that worked on the different technologies that empower the incoming 

technological revolution. At this point in time multiple technologies and cost curves are 

converging for this new chapter in the history of transportation and the world. The automotive 

industry is about to be disrupted, a bigger and faster disruption than the electric vehicle 

revolution taking place. Based on the conducted research, Tesla is one of the leaders in the race 

for solving level 4 or 5 autonomous technology. But they are not alone, billions of dollars are 

being invested every year and there are tens of companies trying to be a relevant player in this 

new industry. 

The economic potential is enormous, and the companies that deploy their autonomous ride-

hailing service will have a first mover advantage and an economic flywheel which will help 

them scale at a tremendous pace. The scale of the opportunity is reflected in the output from 

the Monte Carlo simulation model developed for this master thesis. Using conservative inputs, 

the results of the simulation indicate that the revenue per year in 2040 for the Robotaxi Network 

could be, considering the hypothesis in the model, of half trillion dollars, which would be 

mostly profit because of the business model and cost structure of the business. According to 

the production growth projections Tesla could also become the biggest automaker in ten years 

approximately, surpassing Toyota in the year 2029. 

Their Robotaxi network would be able to capture a significant part of the total addressable 

market, representing around 10% of all vehicle miles travelled by 2040. The environment 

would greatly benefit from this transition to electric vehicles because, the lower costs of the 

service would displace millions of internal combustion cars every year helping to save over 2% 

of current CO2 emissions in the US and Europe and around 0.7% in China. Without the need 
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for driving millions of hours per year will be freed, which will have a significant impact on the 

productivity and gross domestic products of countries if some part of that time can now be used 

for other productive tasks. 

The disruption also offers an opportunity to improve the city’s urban planning, new plots of 

land will progressively become available as the demand for parking diminishes thanks to the 

autonomous ride-hailing services. This will be the right set of circumstances to redesign the 

cities focusing more on people’s needs and not the car needs. The faster electrification of the 

car fleet thanks to the higher displacement rate will make the cities air cleaner and save billions 

on health-related issues. 

Traffic and accident rates will greatly improve with the introduction of autonomous vehicles 

because a significant share of the traffic and accidents occur because of human errors, because 

the slow reaction time, lack of communication or distractions. Millions of lives will be saved 

and hundreds of millions of injuries will be avoided. People will also experience important cost 

savings because of the higher utilization rate of autonomous ride-hailing in comparison with 

owning a car, this will definitely have a positive effect on other industries that will grow 

because of the higher disposable income of families. 

In terms of unemployment a lot of jobs will be displaced by this technology, like taxi driver or 

truck drivers. Retraining for these workers will be crucial, as other job opportunities will be 

created in other areas of the economy because of the disruption and the increase in productivity 

in the economy. This growth will be caused in part by the higher efficiency transportation 

system, which has the potential of offsetting the lost jobs. On a longer term this technology 

could be applied to other uses, because one key element of autonomous driving is interpreting 

the world around the vehicle, which is one of the first steps for developing other artificial 

intelligence tools that interact with the real world in a physical manner and not just software. 
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Regulators are already setting the groundwork for setting the rules that the industry will need 

to follow, but there is a lot of work to be done on this area, and the disruption may happen 

before most people expect. This is why further research on the topic is necessary, in order to 

make a smoother and more beneficial transition to the autonomous future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



86 

 

References 

Amar, J. G. (2006). The Monte Carlo method in science and engineering. Computing in Science 

& Engineering, 8(2), 9–19. https://doi.org/10.1109/MCSE.2006.34 

Anderson, J., Kalra, N., Stanley, K., Sorensen, P., Samaras, C., & Oluwatola, O. (2014). 

Autonomous Vehicle Technology: A Guide for Policymakers. In Autonomous Vehicle 

Technology: A Guide for Policymakers. https://doi.org/10.7249/rr443-2 

Anenberg, S. C., Miller, J., Minjares, R., Du, L., Henze, D. K., Lacey, F., Malley, C. S., 

Emberson, L., Franco, V., Klimont, Z., & Heyes, C. (2017). Impacts and mitigation of 

excess diesel-related NOx emissions in 11 major vehicle markets. Nature, 545(7655), 

467–471. https://doi.org/10.1038/nature22086 

Arbib, J., & Seba, T. (2017). Rethinking Transportation 2020-2030. 

http://static1.squarespace.com/static/585c3439be65942f022bbf9b/t/591a2e4be6f2e1c13

df930c5/1494888038959/RethinkX+Report_051517.pdf 

ARK Invest. (2021). Top-Down and Bottom-Up Research To Capture Innovation Early. 

https://ark-invest.com/investment-process/ 

Bagloee, S. A., Tavana, M., Asadi, M., & Oliver, T. (2016). Autonomous vehicles: challenges, 

opportunities, and future implications for transportation policies. Journal of Modern 

Transportation, 24(4), 284–303. https://doi.org/10.1007/s40534-016-0117-3 

Baldwin, D., & Rehler, J. (2021). America has eight parking spaces for every car. Here’s how 

cities are rethinking that land. Fast Company. 

https://www.fastcompany.com/90645900/america-has-eight-parking-spaces-for-every-

car-heres-how-cities-are-rethinking-that-land 



87 

 

Banomyong, R., & Sopadang, A. (2010). Using Monte Carlo simulation to refine emergency 

logistics response models: a case study. International Journal of Physical Distribution & 

Logistics Management, 40(8/9), 709–721. https://doi.org/10.1108/09600031011079346 

Ben-Joseph, E. (2012). ReThinking a Lot: The Design and Culture of Parking. 

Bieker, G. (2021). A global comparison of the life-cycle greenhouse gas emissions of 

combustion engine and electric passenger cars. https://theicct.org/publications/global-

LCA-passenger-cars-jul2021 

Blincoe, L. J., Miller, T. R., Zaloshnja, E., & Lawrence, B. A. (2015). The Economic and 

Societal Impact Of Motor Vehicle Crashes, 2010 (Revised). 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812013 

Brown, J. R., Morris, E. A., & Taylor, B. D. (2009). Planning for Cars in Cities: Planners, 

Engineers, and Freeways in the 20th Century. Journal of the American Planning 

Association, 75(2), 161–177. https://doi.org/10.1080/01944360802640016 

Buehler, M., Iagnemma, K., & Singh, S. (2007). The 2005 DARPA Grand Challenge (M. 

Buehler, K. Iagnemma, & S. Singh, Eds.; Vol. 36). Springer Berlin Heidelberg. 

https://doi.org/10.1007/978-3-540-73429-1 

Buehler, M., Iagnemma, K., & Singh, S. (Eds.). (2009). The DARPA Urban Challenge (Vol. 

56). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-03991-1 

Bullard, N. (2020). This Is the Dawning of the Age of the Battery. Bloomberg Green. 

https://www.bloomberg.com/news/articles/2020-12-17/this-is-the-dawning-of-the-age-

of-the-battery 



88 

 

California Air Resources Board. (2019). 2018 Base-year Emissions Inventory Report. 

https://ww2.arb.ca.gov/sites/default/files/2019-12/SB 1014 - Base year Emissions 

Inventory_December_2019.pdf 

California Department of Motor Vehicles. (2021a). Autonomous Vehicle Testing Permit 

Holders. https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-

vehicles/autonomous-vehicle-testing-permit-holders/ 

California Department of Motor Vehicles. (2021b). Disengagement Reports. 

https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-

vehicles/disengagement-reports/ 

Center for Disease Control and Prevention. (2019). Health Impacts of Fine Particles in Air. 

https://ephtracking.cdc.gov/showAirHIA.action; 

Chen, Y., Gonder, J., Young, S., & Wood, E. (2019). Quantifying autonomous vehicles 

national fuel consumption impacts: A data-rich approach. Transportation Research Part 

A: Policy and Practice, 122, 134–145. https://doi.org/10.1016/j.tra.2017.10.012 

Collis, R. T. (1970). Lidar Title. Applied Optics, 9(8), 1782–1788. 

https://doi.org/10.1364/AO.9.001782 

comma.ai. (2021). 40 million miles. https://www.youtube.com/watch?v=HrJbg5RuYtE 

Correia, A. W., Pope, C. A., Dockery, D. W., Wang, Y., Ezzati, M., & Dominici, F. (2013). 

Effect of Air Pollution Control on Life Expectancy in the United States. Epidemiology, 

24(1), 23–31. https://doi.org/10.1097/EDE.0b013e3182770237 

Crayton, T. J., & Meier, B. M. (2017). Autonomous vehicles: Developing a public health 

research agenda to frame the future of transportation policy. Journal of Transport & 

Health, 6, 245–252. https://doi.org/10.1016/j.jth.2017.04.004 



89 

 

Curry, C. (2017). Lithium-ion battery costs and market. 

https://data.bloomberglp.com/bnef/sites/14/2017/07/BNEF-Lithium-ion-battery-costs-

and-market.pdf 

DARPA. (2014). The DARPA Grand Challenge: Ten Years Later. 

Dyck, J. J., & Gimpel, J. G. (2005). Distance, Turnout, and the Convenience of Voting*. Social 

Science Quarterly, 86(3), 531–548. https://doi.org/10.1111/j.0038-4941.2005.00316.x 

Fagnant, D. J., & Kockelman, K. M. (2014). The travel and environmental implications of 

shared autonomous vehicles, using agent-based model scenarios. Transportation 

Research Part C: Emerging Technologies, 40, 1–13. 

https://doi.org/10.1016/j.trc.2013.12.001 

Fernandes, P., & Nunes, U. (2012). Platooning With IVC-Enabled Autonomous Vehicles: 

Strategies to Mitigate Communication Delays, Improve Safety and Traffic Flow. IEEE 

Transactions on Intelligent Transportation Systems, 13(1), 91–106. 

https://doi.org/10.1109/TITS.2011.2179936 

Franke, U., Gavrila, D., Gorzig, S., Lindner, F., Puetzold, F., & Wohler, C. (1998). 

Autonomous driving goes downtown. IEEE Intelligent Systems, 13(6), 40–48. 

https://doi.org/10.1109/5254.736001 

Fraser, A. M., Chester, M. v., Matute, J. M., & Pendyala, R. (2016, October). Do Cities Have 

Too Much Parking? ACCESS Magazine, 1–6. https://www.accessmagazine.org/wp-

content/uploads/sites/7/2016/11/access49-web-do-cities-have-too-much-parking.pdf 

Gillies, J. A., Gertler, A. W., Sagebiel, J. C., & Dippel, W. A. (2001). On-Road Particulate 

Matter (PM 2.5 and PM 10 ) Emissions in the Sepulveda Tunnel, Los Angeles, California. 



90 

 

Environmental Science & Technology, 35(6), 1054–1063. 

https://doi.org/10.1021/es991320p 

GM Heritage Center. (2017). Self-Driving Cars, in 1956? 

https://www.gmheritagecenter.com/featured/Autonomous_Vehicles.html 

Godsmark, P., Vijay Gill, B. K., & Flemming, B. (2015). Automated Vehicles: The Coming of 

the Next Disruptive Technology. https://www.cavcoe.com/Downloads/AV_rpt_2015-

01.pdf 

Guarnieri, M. (2011). When cars went electric, Part 2. In IEEE Industrial Electronics Magazine 

(Vol. 5, Issue 2). https://doi.org/10.1109/MIE.2011.941122 

Heinrichs, D. (2016). Autonomous driving and urban land use. In Autonomous Driving: 

Technical, Legal and Social Aspects (pp. 213–231). https://doi.org/10.1007/978-3-662-

48847-8_11 

Held, M., Rosat, N., Georges, G., Pengg, H., & Boulouchos, K. (2021). Lifespans of passenger 

cars in Europe: empirical modelling of fleet turnover dynamics. European Transport 

Research Review, 13(1), 9. https://doi.org/10.1186/s12544-020-00464-0 

Hilbrecht, M., Smale, B., & Mock, S. E. (2014). Highway to health? Commute time and well-

being among Canadian adults. World Leisure Journal, 56(2), 151–163. 

https://doi.org/10.1080/16078055.2014.903723 

Holmes-Gen, B., & Barret, W. (2016). Clean Air Future: Health and Climate Benefits of Zero 

Emission Vehicles. https://www.lung.org/getmedia/b4231b57-878c-4263-8c2b-

8c4cb80d86ca/2016zeroemissions.pdf.pdf 



91 

 

Humphreys, D. K., Goodman, A., & Ogilvie, D. (2013). Associations between active 

commuting and physical and mental wellbeing. Preventive Medicine, 57(2), 135–139. 

https://doi.org/10.1016/j.ypmed.2013.04.008 

IBM Cloud Education. (2020). Monte Carlo Simulation. 

https://www.ibm.com/cloud/learn/monte-carlo-simulation 

International Organization of Motor Vehicle Manufacturers. (2018). World Motor Vehicle 

Production: World Ranking of Manufacturers, Year 2017. https://www.oica.net/wp-

content/uploads/World-Ranking-of-Manufacturers-1.pdf 

J. Shuttleworth. (2019). SAE Standards News: J3016 automated-driving graphic update. 

[Online]. Available: https://www.sae.org/. Society for Automotive Engineers 

International. https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-

graphic 

Jittrapirom, P., Caiati, V., Feneri, A.-M., Ebrahimigharehbaghi, S., González, M. J. A., & 

Narayan, J. (2017). Mobility as a Service: A Critical Review of Definitions, Assessments 

of Schemes, and Key Challenges. Urban Planning, 2(2), 13–25. 

https://doi.org/10.17645/up.v2i2.931 

Johansen, A. M. (2010). Monte Carlo Methods. In International Encyclopedia of Education 

(pp. 296–303). Elsevier. https://doi.org/10.1016/B978-0-08-044894-7.01543-8 

Kahneman, D., & Krueger, A. B. (2006). Developments in the Measurement of Subjective 

Well-Being. Journal of Economic Perspectives, 20(1), 3–24. 

https://doi.org/10.1257/089533006776526030 



92 

 

Kalkhoran, S., & Glantz, S. A. (2015). Modeling the Health Effects of Expanding e-Cigarette 

Sales in the United States and United Kingdom. JAMA Internal Medicine, 175(10), 1671. 

https://doi.org/10.1001/jamainternmed.2015.4209 

Karpathy, A. (2021). Tesla AI Day. https://www.youtube.com/watch?v=j0z4FweCy4M 

Keeney, T. (2017). Mobility As-A-Service: Why Self-Driving Cars Could Change Everything. 

https://research.ark-invest.com/self-driving-cars-white-paper 

Kelly, F. J., & Fussell, J. C. (2015). Air pollution and public health: emerging hazards and 

improved understanding of risk. Environmental Geochemistry and Health, 37(4), 631–

649. https://doi.org/10.1007/s10653-015-9720-1 

KPMG. (2018). Autonomous Vehicles Readiness Index. 

https://assets.kpmg/content/dam/kpmg/be/pdf/2018/01/avri.pdf 

Krueger, R., Rashidi, T. H., & Rose, J. M. (2016). Preferences for shared autonomous vehicles. 

Transportation Research Part C: Emerging Technologies, 69, 343–355. 

https://doi.org/10.1016/j.trc.2016.06.015 

Lambert, F. (2021). Tesla aims to release $25,000 electric car in 2023, likely will not have a 

steering wheel. Electrek. https://electrek.co/2021/09/02/tesla-aims-to-release-25000-

electric-car-in-2023-likely-will-not-have-a-steering-wheel/ 

Levin, M. W., & Boyles, S. D. (2015). Effects of autonomous vehicle ownership on trip, mode, 

and route choice. Transportation Research Record, 2493, 29–38. 

https://doi.org/10.3141/2493-04 

Litman, T. (2015). Autonomous Vehicle Implementation Predictions. In Transportation 

Research Board Annual Meeting (Issue December 2015). http://www.vtpi.org/avip.pdf 



93 

 

Manly, B. F. J. (2018). Randomization, Bootstrap and Monte Carlo Methods in Biology. 

Chapman and Hall/CRC. https://doi.org/10.1201/9781315273075 

McFadden, C. (2020). A Brief History and Evolution of Electric Cars. Interesting Engineering, 

Inc. https://interestingengineering.com/a-brief-history-and-evolution-of-electric-cars 

McGrath, R. G. (2013). The Pace of Technology Adoption is Speeding Up. Harvard Business 

Review. https://hbr.org/2013/11/the-pace-of-technology-adoption-is-speeding-up 

McKenna, F. P. (1982). The human factor in driving accidents An overview of approaches and 

problems. Ergonomics, 25(10), 867–877. https://doi.org/10.1080/00140138208925047 

Mcleish, D. (2005). Monte Carlo Simulation and Finance. https://www.wiley.com/en-

us/Monte+Carlo+Simulation+and+Finance-p-9780471677789 

Milakis, D., van Arem, B., & van Wee, B. (2017). Policy and society related implications of 

automated driving: A review of literature and directions for future research. Journal of 

Intelligent Transportation Systems, 21(4), 324–348. 

https://doi.org/10.1080/15472450.2017.1291351 

Millard-Ball, A. (2019). The autonomous vehicle parking problem. Transport Policy, 75, 99–

108. https://doi.org/10.1016/j.tranpol.2019.01.003 

Musk, E. (2006). The Secret Tesla Motors Master Plan ( just between you and me ). 

https://www.tesla.com/blog/secret-tesla-motors-master-plan-just-between-you-and-me 

Musk, E. (2016). Master Plan, Part Deux. https://www.tesla.com/blog/master-plan-part-deux 

Musk, E. (2021). A major part of real-world AI has to be solved to make unsupervised, 

generalized full self-driving work, as the entire road system is designed for biological 

neural nets with optical imagers. Twitter. 

https://twitter.com/elonmusk/status/1387901003664699392 



94 

 

Nagy, B., Farmer, J. D., Bui, Q. M., & Trancik, J. E. (2013). Statistical Basis for Predicting 

Technological Progress. PLoS ONE, 8(2), e52669. 

https://doi.org/10.1371/journal.pone.0052669 

Nasdaq. (2021). Tesla, Inc. Common Stock. https://www.nasdaq.com/market-

activity/stocks/tsla 

National Conference of State Legislatures. (2021). Autonomous Vehicles State Bill Tracking 

Database. https://www.ncsl.org/research/transportation/autonomous-vehicles-

legislative-database.aspx 

Nevada Legislature. (2011). Assembly Bill No. 511. 

https://www.leg.state.nv.us/Session/76th2011/Bills/AB/AB511_EN.pdf 

NHTSA. (2013a). Driver Electronic Device Use in 2011. 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811719 

NHTSA. (2013b). Preliminary Statement of Policy Concerning Automated Vehicles. In 

National Highway Traffic Safety Administration. 

https://www.nhtsa.gov/staticfiles/rulemaking/pdf/Automated_Vehicles_Policy.pdf 

NHTSA. (2015). Critical reasons for crashes investigated in the National Motor Vehicle Crash 

Causation Survey. In National Highway Traffic Safety Administration (Issue February). 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115 

NHTSA. (2020). 2019 Motor Vehicle Crashes: Overview. 

https://crashstats.nhtsa.dot.gov/Api/Public/Publication/813060 

OECD. (2021). GDP per hour worked. https://data.oecd.org/lprdty/gdp-per-hour-worked.htm 



95 

 

Pavlov, D. (2017). Invention and Development of the Lead–Acid Battery. In Lead-Acid 

Batteries: Science and Technology (pp. 3–32). Elsevier. https://doi.org/10.1016/b978-0-

444-59552-2.00001-8 

Placke, T., Kloepsch, R., Dühnen, S., & Winter, M. (2017). Lithium ion, lithium metal, and 

alternative rechargeable battery technologies: the odyssey for high energy density. 

Journal of Solid State Electrochemistry, 21(7), 1939–1964. 

https://doi.org/10.1007/s10008-017-3610-7 

Pomerleau, D. A. (1987). ALVINN: An Autonomous Land Vehicle in a Neural Network. 

Neural Information Processing Systems, 1(77), 305–313. 

https://doi.org/10.1184/R1/6603146.V1 

ReasonTV. (2021). L.A. Finally Lets People Eat In Parking Lots. 

https://www.youtube.com/watch?v=u9hA83ZY5YY 

Reed, E. (2020). History of Tesla: Timeline and Facts. The Street. 

https://www.thestreet.com/technology/history-of-tesla-15088992 

Reza, V. (2017). Robo-Taxi Service Design, Modeling and Simulation. Modélisation de 

Solutions de Mobilité. https://doi.org/10.13140/RG.2.2.34088.62726 

Ritchie, H., & Roser, M. (2020). CO2 emissions. https://ourworldindata.org/co2-emissions 

Rubin, J. (2016). Connected Autonomous Vehicles: Travel Behavior and Energy Use (pp. 151–

162). https://doi.org/10.1007/978-3-319-40503-2_12 

Sandow, E. (2019). Til Work Do Us Part: The Social Fallacy of Long-Distance Commuting. 

In Integrating Gender into Transport Planning (pp. 121–144). Springer International 

Publishing. https://doi.org/10.1007/978-3-030-05042-9_6 



96 

 

Schaller, R. R. (1997). Moore’s law: past, present and future. IEEE Spectrum, 34(6), 52–59. 

https://doi.org/10.1109/6.591665 

Shahan, Z. (2015). Electric Car Evolution. Clean Technica. 

https://cleantechnica.com/2015/04/26/electric-car-history/ 

Sherman, D. (2015). 2015 Tesla Model S 70D. Car and Driver. 

http://www.caranddriver.com/reviews/2015-tesla-model-s-70d-instrumented-test-review 

Shirouzu, N., & Lienert, P. (2020). Tesla’s secret batteries aim to rework the math for electric 

cars and the grid. Reuters. https://www.reuters.com/article/us-autos-tesla-batteries-

exclusive/exclusive-teslas-secret-batteries-aim-to-rework-the-math-for-electric-cars-and-

the-grid-idUSKBN22Q1WC 

Squatriglia, C. (2010). Tesla IPO Raises $226.1M, Stock Surges 41 Percent. Wired. 

https://www.wired.com/2010/06/tesla-ipo-raises-226-1-million/ 

Stack Overflow. (2020). 2020 Developer Survey. 

https://insights.stackoverflow.com/survey/2020/ 

Tefft, B. C. (2017). American Driving Survey, 2015 – 2016. https://aaafoundation.org/wp-

content/uploads/2018/02/18-0019_AAAFTS-ADS-Research-Brief.pdf 

Tesla. (2010a). Judge strikes claim on who can be declared a founder of Tesla Motors. 

https://www.tesla.com/blog/judge-strikes-claim-who-can-be-declared-founder-tesla-

motors 

Tesla. (2010b). Tesla Cybertruck Unveiling event. 

https://www.youtube.com/watch?v=9P_1_oLGREM 

Tesla. (2011). Revealing Model S Beta. https://www.tesla.com/blog/revealing-model-s-beta 



97 

 

Tesla. (2016). Tesla Makes Offer to Acquire SolarCity. https://www.tesla.com/blog/tesla-

makes-offer-to-acquire-solarcity 

Tesla. (2019a). $35,000 Tesla Model 3 Available Now. https://www.tesla.com/blog/35000-

tesla-model-3-available-now 

Tesla. (2019b). Autonomy Day. https://www.youtube.com/watch?v=Ucp0TTmvqOE 

Tesla. (2020). Shareholder Deck Q4 2020. https://tesla-

cdn.thron.com/static/1LRLZK_2020_Q4_Quarterly_Update_Deck_-

_Searchable_LVA2GL.pdf?xseo=&response-content-

disposition=inline%3Bfilename%3D%22TSLA-Q4-2020-Update.pdf%22 

Tesla. (2021a). About Tesla. https://www.tesla.com/about 

Tesla. (2021b). AI Day. https://www.youtube.com/watch?v=j0z4FweCy4M 

Tesla. (2021c). Impact Report 2020. https://www.tesla.com/ns_videos/2020-tesla-impact-

report.pdf 

Tesla. (2021d). SEC Filings. https://ir.tesla.com/sec-filings 

Tesla. (2021e). Tesla Superchargers. https://www.tesla.com/supercharger 

Tesla. (2021f). Tesla Vehicle Safety Report. https://www.tesla.com/VehicleSafetyReport 

Tesla Motors, Inc. (2010). S-1 Registration Statement Tesla Inc. U.S. Securities and Exchange 

Commission. 

https://www.sec.gov/Archives/edgar/data/1318605/000119312510017054/ds1.htm 

The Conference Board. (2018). Labor productivity per hour worked in China from 2000 to 

2018. https://www-statista-com.eaccess.ub.tum.de/statistics/878164/china-labor-

productivity-per-hour/ 



98 

 

The Texas A&M Transportation Institute. (2019). 2019 Urban Mobility Report. 

https://trid.trb.org/view/1647076 

The World Bank. (2021). GDP. https://data.worldbank.org/indicator/NY.GDP.MKTP.CD 

Thorpe, C., Hebert, M., Kanade, T., & Shafer, S. (1987). Vision and Navigation for the 

Carnegie-Mellon Navlab. Annual Review of Computer Science, 2(1), 521–556. 

https://doi.org/10.1146/annurev.cs.02.060187.002513 

TIME. (1925). Science: Radio Auto. 

http://content.time.com/time/subscriber/article/0,33009,720720,00.html 

Troy, T. (2021). Tesla Production & Delivery History. 

https://docs.google.com/spreadsheets/d/13gloQWclQPYUmHQnWkAwIpOsbSJ8pRmg

8ah7ogoXmtg/ 

Union of Concerned Scientist. (2014). Car Emissions and Global Warming. 

https://www.ucsusa.org/resources/car-emissions-global-warming 

United States Census Bureau. (2021). Census Bureau Estimates Show Average One-Way 

Travel Time to Work Rises to All-Time High. https://www.census.gov/newsroom/press-

releases/2021/one-way-travel-time-to-work-rises.html 

United States Department of Transportation. (2021). Number of U.S. Aircraft, Vehicles, 

Vessels, and Other Conveyances. https://www.bts.gov/content/number-us-aircraft-

vehicles-vessels-and-other-conveyances 

United States Environmental Protection Agency. (2021). Highlights of the Automotive Trends 

Report. https://www.epa.gov/automotive-trends/highlights-automotive-trends-report 

U.S. Department of Energy. (2021). Annual Vehicle Miles Travelled in the United States. 

https://afdc.energy.gov/data/10315 



99 

 

U.S. Department of Transportation. (2021). Traffic Volume Trends. 

https://www.fhwa.dot.gov/policyinformation/travel_monitoring/tvt.cfm 

U.S. Department of Transportation Federal Highway Administration. (2018). Average Annual 

Miles per Driver by Age Group. https://www.fhwa.dot.gov/ohim/onh00/bar8.htm 

U.S. Energy Information Administration. (2016). Annual passenger travel tends to increase 

with income. https://www.eia.gov/todayinenergy/detail.php?id=26192 

U.S. Energy Information Administration. (2021a). Carbon Dioxide Emissions Coefficients. 

https://www.eia.gov/environment/emissions/co2_vol_mass.php 

U.S. Energy Information Administration. (2021b). How much gasoline does the United States 

consume? https://www.eia.gov/tools/faqs/faq.php?id=23&t=10#:~:text=In 2020%2C 

about 123.73 billion,8.05 million barrels per day). 

U.S. Energy Information Administration. (2021c). Why do carbon dioxide emissions weigh 

more than the original fuel? https://www.eia.gov/tools/faqs/faq.php?id=82&t=11 

van Ommeren, J. N., & Gutiérrez-i-Puigarnau, E. (2011). Are workers with a long commute 

less productive? An empirical analysis of absenteeism. Regional Science and Urban 

Economics, 41(1), 1–8. https://doi.org/10.1016/j.regsciurbeco.2010.07.005 

Vance, A. (2015). Elon Musk: Tesla, SpaceX, and the quest for a fantastic future (1st ed.). 

Waymo. (2021a). Waymo Frequently Asked Questions. https://waymo.com/intl/es/faq/ 

Waymo. (2021b). Waymo Safety Report. https://storage.googleapis.com/waymo-

uploads/files/documents/safety/2021-08-waymo-safety-report.pdf 

Wikipedia. (2021). List of probability distributions. 

https://en.wikipedia.org/wiki/List_of_probability_distributions 



100 

 

Williams-Bergen, E., Hedlund, J., Sprattler, K., Ferguson, S., Marti, C., Harsha, B., Adkins, J., 

& Harper, V. (2011). Distracted Driving; What Research Shows and What States Can Do. 

In Online: CDC Motor Vehicle Safety (Vol. 76, Issue 1). 

http://www.cdc.gov/Motorvehiclesafety/Distracted_Driving/index.html 

World Health Organization. (2013). Health effects of particulate matter. 

https://www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effects-of-

particulate-matter-final-Eng.pdf 

World Health Organization. (2021). Road traffic injuries. https://www.who.int/news-

room/fact-sheets/detail/road-traffic-injuries 

Wright, T. P. (1936). Factors Affecting the Cost of Airplanes. Journal of the Aeronautical 

Sciences, 3(4), 122–128. https://doi.org/10.2514/8.155 

Zhao, G. (2017). Reuse and recycling of lithium-ion power batteries. In Reuse and Recycling 

of Lithium-Ion Power Batteries. John Wiley & Sons Singapore Pte. Ltd. 

https://doi.org/10.1002/9781119321866 

  

 

 

  



101 

 

Appendix 

Appendix A 

California DMV disengagement Report  

2019 

Company Miles Diseng. Miles / Diseng. 

Waymo 1,454,13
7 

110 13,219.40 

CRUISE 831,040 68 12,221.20 

Pony.ai 174,845 27 6,475.80 

Baidu 108,300 6 18,050.00 

Nuro 68,762 34 2,022.40 

Zoox 67,015 42 1,595.60 

Lyft 42,931 1667 25.8 

AutoX 32,054 3 10,684.70 

Mercede
s Benz 

14,238 2054 6.9 

Aurora 13,429 141 95.2 

DiDi 12,279.4
0 

8 1,534.90 

Apple 7,544 64 117.9 

NVIDIA 7,218 655 11 

Aimotive 6,056 26 232.9 

WeRide 5,917 39 151.7 

ThorDriv
e 

5,089.00 27 188.5 

Drive.ai  3,974 75 53 

SF 
Motors / 
Seres 

3,493 140 24.9 

Ambarell
a 

3,161.00 52 60.8 

Gatik AI 2,553.00 24 106.4 

Nullmax 2,430 70 34.7 

Nissan 2,277 47 48.5 

SAIC 2,230 40 55.7 

Qualcom
m 

2,164 37 58.5 

PlusAI 1,880 2 940 

Toyota 1,817 2947 0.6 

Intel 1,295.00 165 7.8 

Phantom 
AI 

1,125 43 26.2 

Udelv 707 444 1.6 

Apex.Ai 448.3 63 7.1 

Valeo 100 92 1.1 

Box Bot 38.5 109 0.4 

Telenav 22 3 7.3 

BMW 21 8 2.7 

RIDECE
LL 

8.7 6 1.4 

 

 

 

 

 

 

http://pony.ai/
http://drive.ai/
http://apex.ai/
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2020 

Company Miles Diseng. Miles /  
Diseng. 

Cruise 770,049 27 28,520.34 

Waymo 628,839 21 29,944.69 

Pony.AI 225,496 21 10,737.90 

Zoox 102,521 63 1,627.32 

Nuro 55,370 11 5,033.62 

AutoX 40,734 2 20,367.00 

Lyft 32,731 123 266.11 

Mercedes 29,984 1,167 25.69 

Argo.AI 21,037 2 10,518.59 

Apple 18,805 130 144.66 

WeRide 13,014 2 6,507.00 

Aurora 12,208 37 329.93 

DiDi 10,401 2 5,200.75 

Deeproute.AI  10,018 3 3,339.33 

QCraft 7,582 16 473.88 

NVIDIA 3,033 125 24.26 

Aimotive 2,987 113 26.43 

Toyota 2,875 1,215 2.37 

Gatik.AI 2,352 11 213.82 

Qualcomm 1,727 90 19.19 

SF Motors 875 61 14.34 

EasyMile 424 128 3.31 

Nissan 395 4 98.63 

Ridecell 148 189 0.78 

BMW 122 3 40.67 

Udelv 66 49 1.35 

Valeo 49 99 0.49 

Atlas R. 47 10 4.74 

Telenav 4 2 2 

 

 

 

 

 

 

  

http://pony.ai/
http://argo.ai/
http://deeproute.ai/
http://gatik.ai/
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Appendix B 

Monte-Carlo Simulation Code 

Libraries 

#Data manipulation 

import numpy as np 

import pandas as pd 

import math 

import scipy.stats as stats 

from datetime import timedelta 

from datetime import datetime 

#Data visualization 

import matplotlib.pyplot as plt 

%matplotlib inline 

from tabulate import tabulate 

import seaborn as sns 

from matplotlib.ticker import MaxNLocator 

# ARIMA forecast 

from statsmodels.tsa.stattools import adfuller 

from statsmodels.tsa.seasonal import seasonal_decompose 

from statsmodels.tsa.arima_model import ARIMA 

from pandas.plotting import register_matplotlib_converters 

register_matplotlib_converters() 

 

General Settings 

years_to_simulate=2039 
years=list(range(2022, years_to_simulate+1)) 
simulations=5000 
simulation_list = list(range(0, simulations)) 

 

Graphs style defaults 

sns.set_style('darkgrid')  
sns.color_palette('pastel') 
plt.rc('axes', titlesize=18)      
plt.rc('axes', labelsize=14)     
plt.rc('xtick', labelsize=13)     
plt.rc('ytick', labelsize=13)     
plt.rc('legend', fontsize=13)     
plt.rc('font', size=13)  

 

Functions 

# This function returns the random simulations based on the normal probability distribution given 
def simulate_norm_dist (mini,bear,bull,maxi): 
    mu = (bear+bull)/2 
    sigma = bull-mu 

    list_return = stats.truncnorm( 

    (mini - mu) / sigma, (maxi - mu) / sigma, loc=mu, scale=sigma) 

    x=list_return.rvs(simulations) 

    return(x) 
 

# Given a row with a distribution returns the simulations 
def simulate_normal_dist_row(row): 
    return simulate_norm_dist(row['Min'],row['Bear'],row['Bull'],row['Max']) 
 

# This function returns the simulation of Robotaxi Deployment date 
def get_sims_robo_deployment(table): 
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    areas=table.index 

    robo_deployment_simulations=[] 

    for area in areas: 
        sim_result=simulate_norm_dist(table['Min'][area],table['Bear'][area],table['Bull'][area],table

['Max'][area]) 
        robo_deployment_simulations.append(sim_result) 

    robo_deployment_simulations_df = pd.DataFrame(robo_deployment_simulations, index=table.index).T 

    return robo_deployment_simulations_df 
 

#This function transforms a dataframe from datetime to timestamp 
def datetime_to_timestamp(table): 
    table_timestamp=pd.DataFrame(index=table.index, columns=table.columns) 

    for row in table.index: 
        for column in table.columns: 
            table_timestamp[column][row]=datetime.timestamp(table[column][row]) 

    return table_timestamp 
 

#This function transforms a dataframe from timestamp to datetime 
def timestamp_to_datetime(table): 
    table_datetime=pd.DataFrame(index=table.index, columns=table.columns) 

    for row in table.index: 
        for column in table.columns: 
            table_datetime[column][row]=datetime.fromtimestamp(table[column][row]) 

    return table_datetime 
 

#This function creates the simulation of future production growth for a region 
def get_years_regions_future_production(row): 
    years_simulations=pd.DataFrame() 

    for year in years: 
        sim_result=simulate_norm_dist(row['Min'],row['Bear'],row['Bull'],row['Max']) 
        years_simulations[year]=sim_result 

    return years_simulations 
 

#This function standarises the simulation percentages so they add up to 100% 
def get_standarise_percentages(dictionary): 
    for year in years: 
        for i in simulation_list: 
            total_sum=0 
            for area in dictionary.keys(): 
                total_sum+=dictionary[area][year][i] 

            for area in dictionary.keys(): 
                dictionary[area][year][i]=dictionary[area][year][i]/total_sum 

    return dictionary 
 

#Percentage of Robotaxi network availability per year per region 
def get_all_percentage_years_robo (dates_by_area): 
    result = {} 

    years_percentage_list=[] 

    for area in dates_by_area.columns: 
        result_temp = pd.DataFrame(columns=years, index = simulation_list) 

        for i in simulation_list: 
            initial_year=dates_by_area[area][i].year 

            years_to_change = [year_no_robo for year_no_robo in years if year_no_robo <= initial_year] 
            for year in years_to_change: 
                if year == initial_year: 
                    result_temp[year][i] = get_percentage_year_left(dates_by_area[area][i]) 

                else: 
                    result_temp[year][i]=0 
        result_temp.fillna(1, inplace=True) 
        result[area]=result_temp 

    return result 
 

#Get expected revenue by Tesla based on Robotaxi miles and price 
def get_revenue_tesla_per_region(gen_inp, robo_miles): 
    ppm = gen_inp['Price/Mile'] 
    ppma = gen_inp['Price/Mile Asia'] 
    pf = gen_inp['Platform fee'] 
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    result = {} 

    for area in robo_miles: 
        if area == 'China' or area == 'APAC excl China': 
            ppm_aux = ppma 

        else: 
            ppm_aux = ppm 

        result_area = pd.DataFrame(index = simulation_list,columns=years) 

        for i in simulation_list: 
            for year in years: 
                result_area[year][i]= ppm_aux[i]*robo_miles[area][year][i]*pf[i] 

        result[area]=result_area 

    return result 
     

#Return percentage of availability of the robotaxi network based on deployment date 
def get_percentage_years_robo (date): 
    years_percentage_list=[] 

    initial_year=date.year 

    for year in years: 
        if year > initial_year: 
            years_percentage_list.append(1) 
        elif year == initial_year: 
            years_percentage_list.append(get_percentage_year_left(date)) 

        else: 
            years_percentage_list.append(0) 
    return pd.DataFrame(years_percentage_list, index = years) 
 

#Return percentage of a year left based on a date 
def get_percentage_year_left (date): 
    return (365-date.timetuple().tm_yday)/365 
 

#Returns the average for dataframe by years 
def get_average_per_year(dataframe): 
    result = pd.DataFrame(columns=['average'], index = years ) 
    for year in years: 
        result.loc[year]=dataframe[year].mean() 

    return result 
 

#Returns the quantile of a series 
def get_quantile_per_year(dataframe, q): 
    result = pd.DataFrame(columns=['Q'], index = years ) 
    for year in years: 
        result.loc[year]=dataframe[year].quantile(q) 

    return result 
     

#Given the dictionary with the areas you get the global dataframe 
def get_global_from_areas(data): 
    result = pd.DataFrame(0,columns=years, index = simulation_list) 
    for area in data: 
        result+=data[area] 

    return result 
#Plot areas avg, bear, bull 
def plot_area_series(data,legend,magnitude=0): 
    fig, axes = plt.subplots(figsize=(19,8), nrows=1, ncols=3) 
    if magnitude==6: 
        magnitude_label='in millions' 
    elif magnitude==9: 
        magnitude_label='in billions' 
    elif magnitude==12: 
        magnitude_label='in trillions' 
    else: 
        magnitude_label='' 
        magnitude=0 
    magnitude=pow(10,magnitude) 
    i=0 
    for graph in axes: 
        graph.set_xlabel('Years') 
        graph.set_ylabel(magnitude_label) 
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        if i==0: 
            graph.set_title(legend + "\nAverage case") 
            for area in data: 
                graph.plot(get_average_per_year(data[area])/magnitude,label=area, marker='o', markersi

ze=2) 
        elif i==1: 
            graph.set_title(legend + "\nBull case") 
            for area in data: 
                graph.plot(get_quantile_per_year(data[area]/magnitude,0.75),label=area, marker='o', ma

rkersize=2) 
        else: 
            graph.set_title(legend + "\nBear case") 
            for area in data: 
                graph.plot(get_quantile_per_year(data[area]/magnitude,0.25),label=area, marker='o', ma

rkersize=2) 
        graph.legend(loc=2) 
        i+=1 
        graph.xaxis.set_major_locator(MaxNLocator(integer=True)) 
    return 
 

#Plot global avg, bear, bull together 
def plot_global_series(data,legend,magnitude=0): 
    if magnitude==6: 
        magnitude_label='in millions' 
    elif magnitude==9: 
        magnitude_label='in billions' 
    elif magnitude==12: 
        magnitude_label='in trillions' 
    else: 
        magnitude_label='' 
        magnitude=0 
    magnitude=pow(10,magnitude) 
    fig, axes = plt.subplots(figsize=(19,8)) 
    axes.set_xlabel('Years') 
    axes.set_ylabel(magnitude_label) 

    axes.set_title(legend) 

    axes.plot(get_quantile_per_year(data,0.75)/magnitude, marker='o', markersize=3,label='Bull',color=

'#e67070') 
    axes.plot(get_average_per_year(data)/magnitude, marker='o', markersize=3,label='Average',color='#c

c0000') 
    axes.plot(get_quantile_per_year(data,0.25)/magnitude, marker='o', markersize=3,label='Bear',color=

'#e67070') 
     

    sup=(pd.DataFrame(get_quantile_per_year(data,0.75)['Q'].tolist())/magnitude)[0].tolist() 
    bot=(pd.DataFrame(get_quantile_per_year(data,0.25)['Q'].tolist())/magnitude)[0].tolist() 
    axes.fill_between(years,sup, bot,color='#e67070', alpha=.1) 
    axes.xaxis.set_major_locator(MaxNLocator(integer=True)) 
    axes.legend(loc=2) 
    plt.xticks(years) 

    return 
 

#Plot just three areas and their avg, bear, bull together 
def plot_3_areas(data,legend,magnitude=0): 
    areas=list(data.keys()) 

    if magnitude==6: 
        magnitude_label='in millions' 
    elif magnitude==9: 
        magnitude_label='in billions' 
    elif magnitude==12: 
        magnitude_label='in trillions' 
    else: 
        magnitude_label='' 
        magnitude=0 
    magnitude=pow(10,magnitude) 
    fig, axes = plt.subplots(figsize=(19,8), nrows=1, ncols=3) 
    i=0 
    for graph in axes: 
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        graph.set_xlabel('Years') 
        graph.set_ylabel(magnitude_label) 

        graph.set_title(legend+ '\n' + areas[i])     
        graph.plot(get_quantile_per_year(data[areas[i]],0.75)/magnitude, marker='o', markersize=2,labe

l='Bull',color='#e67070') 
        graph.plot(get_average_per_year(data[areas[i]])/magnitude, marker='o', markersize=2,label='Ave

rage',color='#cc0000') 
        graph.plot(get_quantile_per_year(data[areas[i]],0.25)/magnitude, marker='o', markersize=2,labe

l='Bear',color='#e67070') 
        graph.legend(loc=2) 
        sup=(pd.DataFrame(get_quantile_per_year(data[areas[i]],0.75)['Q'].tolist())/magnitude)[0].toli

st() 
        bot=(pd.DataFrame(get_quantile_per_year(data[areas[i]],0.25)['Q'].tolist())/magnitude)[0].toli

st() 
        graph.fill_between(years,sup, bot,color='#e67070', alpha=.1) 
        graph.xaxis.set_major_locator(MaxNLocator(integer=True)) 
        i+=1 
    return 
 

# Plot Graph based on percentages 
def plot_percentage_graph (data,title): 
    percetage_avg=get_average_per_year(data) 

    percetage_bear=get_quantile_per_year(data,0.25) 
    percetage_bull=get_quantile_per_year(data,0.75) 
    percetage_bull_bear_diff=percetage_bull['Q']*100-percetage_bear['Q']*100 
    fig, axes = plt.subplots(figsize=(16,6)) 
    axes.set_xlabel('Years') 
    axes.set_ylabel('%') 
    axes.set_title(title) 

    axes.bar(percetage_avg.index,percetage_avg['average']*100,color='#cc0000',yerr=percetage_bull_bear

_diff, capsize=5) 
    axes.xaxis.set_major_locator(MaxNLocator(integer=True)) 
    plt.xticks(years) 

 

General Inputs 

general_inputs=pd.read_csv('./Data/general_inputs.csv', index_col = 0)                         
general_inputs_sims = pd.DataFrame() 

 

for item in general_inputs.index: 
    general_inputs_sims[item]=simulate_normal_dist_row(general_inputs.loc[item]) 

 

general_inputs_sims['Miles/car']= 52*general_inputs_sims['Days/week']*general_inputs_sims['Hours/day']

*general_inputs_sims['Miles/hour']*general_inputs_sims['% ocupacy'] 
 

Production History 

#Global Historic 
glob_del_hist=pd.read_csv('./Data/tesla_production_history.csv', index_col = 0) 
glob_del_hist.loc['Total']= glob_del_hist.sum(axis=0) 
glob_del_hist_wo_total=glob_del_hist[:-1] 
glob_del_hist_graph=glob_del_hist_wo_total.drop(columns=['Total']) 
 

# Plot production history 
fig, ax = plt.subplots(figsize=(16,10)) 
 

prev_aux=glob_del_hist_graph['USA']*0 
for area in glob_del_hist_graph: 
    ax.bar(list(glob_del_hist_graph.index), glob_del_hist_graph[area], label=area,bottom=prev_aux) 

    prev_aux+=glob_del_hist_graph[area] 

ax.set_xlabel('Years') 
ax.set_ylabel('Production') 
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ax.set_title("Tesla's production by area") 
ax.legend() 

plt.show() 

 

Production distribution 

#Percentage’s future 
percent_region_future = pd.read_csv('./Data/production_area_distribution.csv', index_col = 0) 
 

percent_region_future_sims={} 

for area in percent_region_future.index: 
    percent_region_future_sims[area]=get_years_regions_future_production(percent_region_future.loc[are

a]) 

 

percent_region_future_sims = get_standarise_percentages(percent_region_future_sims) 

 

Production, Discontinued and Cumulative cars 

#Starting point 
start_by_area_2021 = glob_del_hist.loc['Total'][:-1] 
 

#Production 2021 
production_2021_pred = glob_del_hist['Total'][2021] 
 

#Projected growth input data 
proj_prod_input=pd.read_csv('./Data/projected_production_growth.csv', index_col = 0) 
 

# Get growth percentage 
proj_prod_input 

growth_percentage = pd.DataFrame(columns=years, index = simulation_list) 

for year in years: 
    growth_percentage[year]=simulate_norm_dist(proj_prod_input['Min'][year],proj_prod_input['Bear'][ye

ar],proj_prod_input['Bull'][year],proj_prod_input['Max'][year]) 
 

#Simulations of lifespan 
discontinued_sims = general_inputs_sims['Car Lifespan'] 
 

#Get discontinued cars by region 
def get_discontinued_by_calculation (area,year,i,ls,ls_dec): 
    result = 0 
    if (year - ls) in glob_del_hist : 
        result += glob_del_hist[area][year - ls]*(1-ls_dec) 
    elif (year - ls) in temp_result_prod: 
        result += temp_result_prod[year - ls][i]*(1-ls_dec) 
    if (year - ls-1) in glob_del_hist : 
        result += glob_del_hist[area][year - ls-1]*ls_dec 
    elif (year - ls-1) in temp_result_prod: 
        result += temp_result_prod[year - ls-1][i]*ls_dec 
    return result 
 

# Get cumulative cars per area 
cum_cars_by_area = {} 

prod_cars_by_area = {} 

prod_disc_by_area = {} 

for area in start_by_area_2021.index: 
    temp_result_cum = pd.DataFrame(columns=years, index = simulation_list) 

    temp_result_prod = pd.DataFrame(columns=years, index = simulation_list) 

    temp_result_disc = pd.DataFrame(columns=years, index = simulation_list) 

    for i in simulation_list: 
        lifespan_sim = math.floor(discontinued_sims[i]) 

        decimal_lifespan_sim = discontinued_sims[i] % 1 
        for year in years: 
            if year == 2022: 
                temp_result_prod[year][i] = production_2021_pred*(1+growth_percentage[year][i])*percen

t_region_future_sims[area][year][i] 
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                temp_result_disc[year][i] = get_discontinued_by_calculation(area,year,i,lifespan_sim,d

ecimal_lifespan_sim) 

                temp_result_cum[year][i] = start_by_area_2021[area] + temp_result_prod[year][i] 

            else: 
                temp_result_prod[year][i] = temp_result_prod[year - 1][i]/percent_region_future_sims[a

rea][year-1][i]*(1+growth_percentage[year][i])*percent_region_future_sims[area][year][i] 
                temp_result_disc[year][i] = get_discontinued_by_calculation(area,year,i,lifespan_sim,d

ecimal_lifespan_sim) 

                temp_result_cum[year][i] = temp_result_cum[year - 1][i] + temp_result_prod[year][i] - 

temp_result_disc[year][i] 
    prod_cars_by_area[area] = temp_result_prod 

    prod_disc_by_area[area] = temp_result_disc 

    cum_cars_by_area[area] = temp_result_cum   

 

#Plot results 
plot_area_series(prod_cars_by_area,"Production cars",6) 
plot_area_series(prod_disc_by_area,"Discontinued cars",6) 
plot_area_series(cum_cars_by_area,"Cumulatitive cars",6) 
 

cum_cars= get_global_from_areas(cum_cars_by_area) 

prod_cars= get_global_from_areas(prod_cars_by_area) 

prod_disc= get_global_from_areas(prod_disc_by_area) 

 

plot_global_series(prod_cars,"Global Production cars",6) 
plot_global_series(prod_disc,"Global Discontinued cars",6) 
plot_global_series(cum_cars,"Global Cumulative cars",6) 

 

Robotaxi Deployment date 

robotaxi_deployment_input=pd.read_csv('./Data/robotaxi_deployment_date.csv', index_col = 0, parse_date

s=['Min','Bear','Bull','Max']) 
 

robotaxi_deployment_input_timestamp=datetime_to_timestamp(robotaxi_deployment_input) 

sims_robo_deployment = get_sims_robo_deployment(robotaxi_deployment_input_timestamp) 

sims_robo_deployment_datetime=timestamp_to_datetime(sims_robo_deployment) 

 

#Plot results 
fig, axes = plt.subplots(figsize=(16,16), nrows=5, ncols=1) 
fig.tight_layout(pad=5.0) 
i=0 
for area in sims_robo_deployment_datetime: 
    axes[i].hist(sims_robo_deployment_datetime[area],bins=100,density=True, stacked=True, color='#cc00

00') 
    axes[i].set_xlabel('Years') 
    axes[i].set_title(area) 

    i+=1 

 

Robotaxi driven miles 

#Get the percentage of Robotaxi per year to accurately calculate 
percentage_years_robo = get_all_percentage_years_robo(sims_robo_deployment_datetime) 
robotaxi_miles_per_region = {} 
percentage_years_robo 
sims_robo_deployment_datetime 
 
for area in cum_cars_by_area: 
    aux = pd.DataFrame(columns=years, index = simulation_list) 
    for i in simulation_list: 
        for year in cum_cars_by_area[area]: 
            aux[year][i] = cum_cars_by_area[area][year][i] * general_inputs_sims['Miles/car'][i] * gen
eral_inputs_sims['Network Participation'][i]*percentage_years_robo[area][year][i] 
    robotaxi_miles_per_region[area]=aux 
robotaxi_miles_per_region 
 
#Global robotaxi miles 
robotaxi_miles= get_global_from_areas(robotaxi_miles_per_region) 
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plot_area_series(robotaxi_miles_per_region,"Robotaxi Miles",12) 
plot_global_series(robotaxi_miles,"Global Robotaxi Miles",12) 
 
#Simulation trend for VMT 
vmt_history=pd.read_csv('./Data/VMT_US.csv',parse_dates=['DATE'],index_col = ['DATE'],dayfirst=True) 
 
#ARIMA model 
 
vmt_history_log = np.log(vmt_history) 
 
vmt_model = ARIMA(vmt_history_log, order=(1,1,1)) 
vmt_model_fit = vmt_model.fit(disp=-1) 
 
predictions_ARIMA_diff = pd.Series(vmt_model_fit.fittedvalues, copy=True) 
predictions_ARIMA_diff_cumsum = predictions_ARIMA_diff.cumsum() 
predictions_ARIMA_log = pd.Series(vmt_history_log['VMT'].iloc[0], index=vmt_history_log.index) 
predictions_ARIMA_log = predictions_ARIMA_log.add(predictions_ARIMA_diff_cumsum, fill_value=0) 
predictions_ARIMA = np.exp(predictions_ARIMA_log) 
plt.plot(vmt_history, color= 'r',label='Historical VMT') 
plt.plot(predictions_ARIMA, color = 'g',label='ARIMA Model') 
plt.legend() 
vmt_months_sim=12*(years_to_simulate-2019) 
 
vmt_model_fit.plot_predict(1,588+vmt_months_sim) 
vmt_forecast=vmt_model_fit.forecast(steps=vmt_months_sim, exog=None, alpha=0.05) 
 
residuals = pd.DataFrame(vmt_model_fit.resid) 
fig, ax = plt.subplots(1,2) 
residuals.plot(title="Residuals", ax=ax[0]) 
residuals.plot(kind='kde', title='Density', ax=ax[1]) 
plt.show() 
 
result_list=[] 
for i in range(2020,years_to_simulate+1): 
    for j in range(1,13): 
        result_list.append('1/'+str(j)+'/'+str(i)) 
vmt_forecast_dates=pd.to_datetime(result_list,dayfirst=True) 
vmt_predicted=pd.DataFrame(columns=['DATE','VMT']) 
vmt_predicted['DATE']=vmt_forecast_dates 
vmt_predicted['VMT']=np.exp(vmt_forecast[0])   
vmt_predicted=vmt_predicted.set_index('DATE') 
 
vmt_history_predicted=vmt_history.append(vmt_predicted) 
 
plt.plot(vmt_history.index,vmt_history['VMT'],color='#cc0000',label='Historical VMT') 
plt.plot(vmt_predicted.index,vmt_predicted['VMT'],color='#e67070',label='ARIMA prediction') 
plt.legend() 
 

# Percentage of Vehicle Miles Travelled USA (01/02/2020 3271512) 
VMT_MA= vmt_predicted.rolling(12, min_periods=1).mean() 
     
us_percetage_vmt=pd.DataFrame(columns=years, index = simulation_list) 
for year in years: 
    us_percetage_vmt[year]=robotaxi_miles_per_region['USA'][year]/VMT_MA['VMT'][str(year)+'-06-
01']/1000000 
 
plot_percentage_graph(us_percetage_vmt,'% of Robotaxi miles over forecasted VMT in the US') 
 

Tesla Revenue 

revenue_tesla_per_region = get_revenue_tesla_per_region(general_inputs_sims, robotaxi_miles_per_region
) 
revenue_tesla_global = get_global_from_areas(revenue_tesla_per_region) 
 
plot_area_series(revenue_tesla_per_region,"Revenue Tesla",9) 
plot_global_series(revenue_tesla_global,"Global Revenue Tesla",9) 
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Car owner’s revenue 

car_owner_revenue = (general_inputs_sims['Price/Mile'] * (1-
general_inputs_sims['Platform fee']) - general_inputs_sims['Costs/Mile']) * general_inputs_sims['Miles
/car'] 
 
car_owner_revenue_avg=car_owner_revenue.mean() 
car_owner_revenue_bear=car_owner_revenue.quantile(0.25) 
car_owner_revenue_bull=car_owner_revenue.quantile(0.75) 
 
fig, axes = plt.subplots(figsize=(16,6)) 
axes.hist(car_owner_revenue, bins=100, density=True, stacked=True, color='#cc0000') 
#Average 
axes.axvline(car_owner_revenue_avg, color='#a4c4ec', linestyle='dashed', linewidth=2) 
min_ylim, max_ylim = plt.ylim() 
plt.text(car_owner_revenue_avg*1.02, max_ylim*0.9, 'Mean\n ${:.2f}'.format(car_owner_revenue_avg)) 
#Bear 
axes.axvline(car_owner_revenue_bear, color='#a4c4ec', linestyle='dashed', linewidth=2) 
min_ylim, max_ylim = plt.ylim() 
plt.text(car_owner_revenue_bear*0.71, max_ylim*0.9, 'Bear\n ${:.2f}'.format(car_owner_revenue_bear)) 
#Bull 
axes.axvline(car_owner_revenue_bull, color='#a4c4ec', linestyle='dashed', linewidth=2) 
min_ylim, max_ylim = plt.ylim() 
plt.text(car_owner_revenue_bull*1.02, max_ylim*0.9, 'Bull\n ${:.2f}'.format(car_owner_revenue_bull)) 
 
axes.set_title("Tesla car's owner revenue (not Asia)") 
axes.set_xlabel('Dollars ($)') 
 

CO2 saved 

g_co2_mile_2021=pd.DataFrame([[395.721596,133.897421],[410.141318,165.730245],[419.137551,265.413012]]
, index=['Europe','USA','China'], columns=['ICE','EV']) 
 
tons_co2_saved = {} 
for area in g_co2_mile_2021.index: 
    temp_result = pd.DataFrame(columns=years, index = simulation_list) 
    for year in years: 
        for i in simulation_list: 
            temp_result[year][i]=robotaxi_miles_per_region[area][year][i] * (g_co2_mile_2021['ICE'][ar
ea]-g_co2_mile_2021['EV'][area]) / 1000000 
    tons_co2_saved[area]=temp_result 
plot_3_areas(tons_co2_saved,"Tons of CO2 saved",6) 
 
# Percentage of CO2 saved compared to CO2 produced by region  
tons_co2_produced = pd.DataFrame([4712770573,4946034489,10667887453],index=['USA','Europe','China'], c
olumns=['CO2 Tons/year']).T 
percentage_tons_co2_saved_per_region = {} 
for area in g_co2_mile_2021.index: 
    temp_result=pd.DataFrame(columns=years, index = simulation_list) 
    for year in years: 
        for i in simulation_list: 
            temp_result[year][i]=tons_co2_saved[area][year][i]/tons_co2_produced[area][0] 
    percentage_tons_co2_saved_per_region[area]=temp_result 
 
for area in percentage_tons_co2_saved_per_region: 
    plot_percentage_graph(percentage_tons_co2_saved_per_region[area],'% of CO2 emissions (2021) saved 
by Robotaxi in '+area) 
 

Savings in pollution 

#Pollution in 
cities is a known issue,  very difficult to quantify, but accordingly to the American Lung Association
   
 
ALA_cost_gallon = 1.15 
usa_mpg = 25.4 
 
savings_pollution_ALA = robotaxi_miles_per_region['USA'] * ALA_cost_gallon / usa_mpg * (g_co2_mile_202
1['ICE']['USA'] - g_co2_mile_2021['EV']['USA']) / g_co2_mile_2021['ICE']['USA'] 
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plot_global_series(savings_pollution_ALA,"Dollar savings in Health related Pollution",9) 
 

Displaced cars 

cars_usa=282.8E6 
avg_miles_car=13476 
 
cars_displaced = robotaxi_miles_per_region['USA']/avg_miles_car 
 
s_negative = pd.DataFrame(cars_usa,index = simulation_list,columns=years) 
for i in simulation_list: 
    hours_day=general_inputs_sims['Hours/day'][i] 
    for year in years: 
        s_negative[year][i]-=cars_displaced[year][i] 
 
s_tesla_cars = cum_cars_by_area['USA'] 
s_robo_cars = pd.DataFrame(index = simulation_list,columns=years) 
for i in simulation_list: 
    s_robo_cars.loc[i] = cum_cars_by_area['USA'].loc[i] * general_inputs_sims['Network Participation']
[i] 
 
fig_1 = plt.figure(figsize=(19,8),dpi=100) 
axes_1 = fig_1.add_axes([0,0,1,1]) 
displaced_curves=[s_negative,s_tesla_cars,s_robo_cars,cars_displaced] 
displaced_color=['#ADD8E6','#e67070','#fed8b1','#B3E6B5'] 
displaced_color_main=['#1f77b4','#cc0000','#ff7f0e','#2ca02c'] 
displaced_legend=['Cars not displaced','Tesla Cars','Robotaxies in the Network','Cars displaced by Rob
otaxies'] 
 
i=0 
for curve in displaced_curves: 
    axes_1.plot(get_average_per_year(displaced_curves[i]),label=displaced_legend[i], marker='o',color=
displaced_color_main[i] ,markersize=2) 
    axes_1.plot(get_quantile_per_year(displaced_curves[i],0.25),color=displaced_color[i], marker='o', 
markersize=2) 
    axes_1.plot(get_quantile_per_year(displaced_curves[i],0.75),color=displaced_color[i], marker='o', 
markersize=2) 
    sup=(pd.DataFrame(get_quantile_per_year(displaced_curves[i],0.75)['Q'].tolist()))[0].tolist() 
    bot=(pd.DataFrame(get_quantile_per_year(displaced_curves[i],0.25)['Q'].tolist()))[0].tolist() 
    axes_1.fill_between(years,sup, bot,color=displaced_color[i], alpha=.35) 
    i+=1 
 
axes_1.legend(loc=2) 
axes_1.set_title('Cars displacement by Robotaxi in the US') 
plt.xticks(years) 
 
#Displacement capability, all years have the same 
displacement_coefficient_all = cars_displaced/s_robo_cars 
displacement_coefficient=displacement_coefficient_all[2030] 
displacement_coefficient_avg=displacement_coefficient.mean() 
displacement_coefficient_bear=displacement_coefficient.quantile(0.25) 
displacement_coefficient_bull=displacement_coefficient.quantile(0.75) 
 
fig, axes = plt.subplots(figsize=(16,6)) 
axes.hist(displacement_coefficient, bins=100, density=True, stacked=True, color='#cc0000') 
#Average 
axes.axvline(displacement_coefficient_avg, color='#a4c4ec', linestyle='dashed', linewidth=2) 
min_ylim, max_ylim = plt.ylim() 
plt.text(displacement_coefficient_avg*1.02, max_ylim*0.9, 'Mean\n {:.2f}'.format(displacement_coeffici
ent_avg)) 
#Bear 
axes.axvline(displacement_coefficient_bear, color='#a4c4ec', linestyle='dashed', linewidth=2) 
min_ylim, max_ylim = plt.ylim() 
plt.text(displacement_coefficient_bear*0.8, max_ylim*0.9, 'Bear\n {:.2f}'.format(displacement_coeffici
ent_bear)) 
#Bull 
axes.axvline(displacement_coefficient_bull, color='#a4c4ec', linestyle='dashed', linewidth=2) 
min_ylim, max_ylim = plt.ylim() 
plt.text(displacement_coefficient_bull*1.02, max_ylim*0.9, 'Bull\n {:.2f}'.format(displacement_coeffic
ient_bull)) 
 
axes.set_title("Tesla Robotaxi Displacement coefficient in the US")  
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Time freed 

hours_saved_per_region =  {} 
hours_in_year = 8760 
 
for area in robotaxi_miles_per_region.keys(): 
    temp_hours_saved_per_region = pd.DataFrame(index = simulation_list,columns=years) 
    for i in simulation_list: 
        for year in years: 
            temp_hours_saved_per_region[year][i] = robotaxi_miles_per_region[area][year][i] / general_
inputs_sims['Miles/hour'][i]  
    hours_saved_per_region[area]=temp_hours_saved_per_region 
 
years_saved_per_region =  {}   
for area in hours_saved_per_region: 
    years_saved_per_region[area]=hours_saved_per_region[area]/hours_in_year 
 
years_saved_global=get_global_from_areas(years_saved_per_region) 
 
plot_area_series(years_saved_per_region,"Time saved in years",6) 
plot_global_series(years_saved_global,"Time saved in years",6) 
 
#Maximum potential extra GDP percentage 
gdp_per_hour_work = pd.DataFrame([74.19,54.25,15,56.61],index=['USA','Europe','China','Canada'], colum
ns=['Productivity']).T 
gdp_per_area = pd.DataFrame([20936600*1000000,15276468.99*1000000,14722730.70*1000000,1644037.29*10000
00],index=['USA','Europe','China','Canada'], columns=['GDP']).T 
 
extra_gdp={} 
percentage_extra_gdp={} 
for area in gdp_per_hour_work: 
    extra_gdp[area]=hours_saved_per_region[area]*gdp_per_hour_work[area]['Productivity'] 
    percentage_extra_gdp[area] = extra_gdp[area]/gdp_per_area[area]['GDP'] 
    plot_percentage_graph(percentage_extra_gdp[area],'% of potential extra GDP '+area) 
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